Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas M. Robert is active.

Publication


Featured researches published by Nicholas M. Robert.


Biology of Reproduction | 2006

The Orphan Nuclear Receptor NR4A1 Regulates Insulin-Like 3 Gene Transcription in Leydig Cells

Nicholas M. Robert; Luc J. Martin; Jacques J. Tremblay

Abstract Insulin-like 3 (INSL3) is a hormone produced by fetal and adult Leydig cells of the testis and by theca and luteal cells of the adult ovary. In males, INSL3 regulates testicular descent during fetal life, whereas in adults, it acts as a germ cell survival factor. In the ovary, INSL3 regulates oocyte maturation. Despite its importance for male sex differentiation and reproductive function in both sexes, very little is known regarding the molecular mechanisms that regulate Insl3 expression. So far, the nuclear receptor NR5A1 is the only transcription factor known to regulate the mouse Insl3 promoter in Leydig cells. NR5A1 by itself, however, cannot explain the spatiotemporal expression pattern of the Insl3 gene. In the present study, we have identified the orphan nuclear receptor NR4A1 as a novel regulator of INSL3 transcription in Leydig cells. Using RT-PCR, we found that Nr4a1 is coexpressed with Insl3 in purified Leydig cells and in several Leydig cell lines. Through detailed analyses of the mouse and human INSL3 promoter in Leydig cells, we have mapped a novel regulatory element located at −100 bp that is essential and sufficient to confer NR4A1 responsiveness. Consistent with a role for NR4A1 in Insl3 transcription, chromatin immunoprecipitation assays revealed that endogenous NR4A1 binds to the proximal Insl3 promoter in vivo. Finally, we found that NR4A1 is also implicated in cAMP-induced Insl3 transcription in Leydig cells. Taken together, our identification of NR4A1 as an important regulator of mouse and human INSL3 promoter activity helps us to better define the tissue-specific regulation of the INSL3 gene in gonadal cells.


Cancer Letters | 2009

The nuclear receptors SF1 and LRH1 are expressed in endometrial cancer cells and regulate steroidogenic gene transcription by cooperating with AP-1 factors

Charlotte Dubé; Francis Bergeron; Marie-Josée Vaillant; Nicholas M. Robert; Catherine Brousseau; Jacques J. Tremblay

Excessive exposure to estradiol represents the main risk factor for endometrial cancer. The abnormally high estradiol levels in the endometrium of women with endometrial cancer are most likely due to overproduction by the tumour itself. Endometrial cancer cells express the genes encoding the steroidogenic enzymes involved in estradiol synthesis. Here we used RT-PCR and Western blot to show that the nuclear receptors SF1 and LRH1, two well-known regulators of steroidogenic gene expression in gonadal and adrenal cells, are also expressed in endometrial cancer cell lines. By transient transfections, we found that SF1 and LRH1, but not the related nuclear receptor NUR77, can activate the promoters of three human steroidogenic genes: STAR, HSD3B2, and CYP19A1 PII. Similarly, forskolin but not PMA, could activate all three promoters. In addition, we found that both SF1 and LRH1 can transcriptionally cooperate with the AP-1 family members c-JUN and c-FOS, known to be associated with enhanced proliferation of endometrial carcinoma cells, to further enhance activation of the STAR, HSD3B2, and CYP19A1 PII promoters. All together, our data provide novel insights into the mechanisms of steroidogenic gene expression in endometrial cancer cells and thus in the regulation of estradiol biosynthesis by tumour cells.


Molecular and Cellular Endocrinology | 2006

LRH-1/NR5A2 cooperates with GATA factors to regulate inhibin α-subunit promoter activity

Nicholas M. Robert; Yoko Miyamoto; Hiroaki Taniguchi; Robert S. Viger

Abstract Inhibin α is the common subunit of the dimeric inhibin proteins known for their role in suppressing pituitary FSH secretion. In this study, we have examined the role of GATA factors and the nuclear receptor, LRH-1/NR5A2, in the regulation of inhibin α-subunit promoter activity. The inhibin α promoter contains two GATA-binding motifs that can be activated by GATA4 or GATA6. The GATA-dependence of the promoter was demonstrated by downregulating GATA expression in MA-10 cells using siRNA technology. We next examined whether GATA factors could cooperate with LRH-1, a factor recently proposed to be an important regulator of inhibin α-subunit transcription. Both GATA4 and GATA6 strongly synergized with LRH-1. Consistent with the cAMP-dependence of the inhibin α-subunit promoter, GATA/LRH-1 synergism was markedly enhanced by PKA and the co-activator protein CBP. Thus, our results identify LRH-1 as a new transcriptional partner for GATA factors in the regulation of inhibin α-subunit gene expression.


Biology of Reproduction | 2014

The Nuclear Receptor NR2F2 Activates Star Expression and Steroidogenesis in Mouse MA-10 and MLTC-1 Leydig Cells

Raifish E. Mendoza-Villarroel; Nicholas M. Robert; Luc J. Martin; Catherine Brousseau; Jacques J. Tremblay

ABSTRACT Testosterone production is dependent on cholesterol transport within the mitochondrial matrix, an essential step mediated by a protein complex containing the steroidogenic acute regulatory (STAR) protein. In steroidogenic Leydig cells, Star expression is hormonally regulated and involves several transcription factors. NR2F2 (COUP-TFII) is an orphan nuclear receptor that plays critical roles in cell differentiation and lineage determination. Conditional NR2F2 knockout prior to puberty leads to male infertility due to insufficient testosterone production, suggesting that NR2F2 could positively regulate steroidogenesis and Star expression. In this study we found that NR2F2 is expressed in the nucleus of some peritubular myoid cells and in interstitial cells, mainly in steroidogenically active adult Leydig cells. In MA-10 and MLTC-1 Leydig cells, small interfering RNA (siRNA)-mediated NR2F2 knockdown reduces basal steroid production without affecting hormone responsiveness. Consistent with this, we found that STAR mRNA and protein levels were reduced in NR2F2-depleted MA-10 and MLTC-1 cells. Transient transfections of Leydig cells revealed that a −986 bp mouse Star promoter construct was activated 3-fold by NR2F2. Using 5′ progressive deletion constructs, we mapped the NR2F2-responsive element between −131 and −95 bp. This proximal promoter region contains a previously uncharacterized direct repeat 1 (DR1)-like element to which NR2F2 is recruited and directly binds. Mutations in the DR1-like element that prevent NR2F2 binding severely blunted NR2F2-mediated Star promoter activation. These data identify an essential role for the nuclear receptor NR2F2 as a direct activator of Star gene expression in Leydig cells, and thus in the control of steroid hormone biosynthesis.


Annals of the New York Academy of Sciences | 2005

Role of nuclear receptors in INSL3 gene transcription in Leydig cells.

Jacques J. Tremblay; Nicholas M. Robert

Abstract: Insulin‐like 3 (INSL3) is a hormone produced by testicular Leydig cells throughout life. During embryonic life it regulates an essential step of testicular descent, whereas in adults it acts as a male germ cell survival factor. Despite the importance of INSL3 for male sex differentiation and function, very little is known regarding the molecular mechanisms that regulate its expression. So far, the nuclear receptor SF‐1 is the only transcription factor known to regulate the mouse Insl3 promoter in Leydig cells. In order to further our understanding of the transcriptional regulation of INSL3 expression, we have isolated the human INSL3 promoter and tested the effects of the nuclear receptors SF‐1, LRH‐1, and Nur77 on its activity in Leydig cells. In transfections assays, all three nuclear receptors activated the human INSL3 promoter but especially Nur77, which acted through a novel regulatory element. Thus, the human INSL3 promoter constitutes a novel target for the orphan nuclear receptor Nur77.


Annals of the New York Academy of Sciences | 2009

Nuclear Receptors, Testosterone, and Posttranslational Modifications in Human INSL3 Promoter Activity in Testicular Leydig Cells

Jacques J. Tremblay; Nicholas M. Robert; Éric Laguë

Insulin‐like peptide 3 (INSL3) is a hormone produced by fetal and adult Leydig cells of the mammalian testis. During embryonic life INSL3 is required for testicular descent, whereas in adults it is involved in bone metabolism and male germ cell survival. Despite these important roles, the molecular mechanisms regulating INSL3 expression remain poorly understood. So far, two transcription factors have been implicated in INSL3 transcription: the nuclear receptors SF1 and NUR77. Circumstantial evidence also points to a role for androgens. Using transient transfections in MA‐10 Leydig cells, we found that testosterone regulates in a time‐ and dose‐dependent manner the human INSL3 promoter. The INSL3 promoter, however, does not contain a classical androgen‐responsive element. Testosterone responsiveness was found to be mediated through an element located in the proximal INSL3 promoter, which also contains a NUR77‐SF1‐binding site. Furthermore, we found that posttranslational modifications, such as phosphorylation and acetylation, modulate transcription factor activity and therefore also contribute to INSL3 promoter activity in Leydig cells. All together, these data provide new insights into the molecular mechanisms regulating INSL3 expression in the mammalian testis.


Journal of Molecular Endocrinology | 2016

Calcium-dependent Nr4a1 expression in mouse Leydig cells requires distinct AP1/CRE and MEF2 elements.

Houssein S. Abdou; Nicholas M. Robert; Jacques J. Tremblay

The nuclear receptor NR4A1 is expressed in steroidogenic Leydig cells where it plays pivotal roles by regulating the expression of several genes involved in steroidogenesis and male sex differentiation including Star, HSD3B2, and Insl3 Activation of the cAMP and Ca(2+) signaling pathways in response to LH stimulation leads to a rapid and robust activation of Nr4a1 gene expression that requires the Ca(2+)/CAMKI pathway. However, the downstream transcription factor(s) have yet to be characterized. To identify potential Ca(2+)/CaM effectors responsible for hormone-induced Nr4a1 expression, MA-10 Leydig cells were treated with forskolin to increase endogenous cAMP levels, dantrolene to inhibit endoplasmic reticulum Ca(2+) release, and W7 to inhibit CaM activity. We identified Ca(2+)-responsive elements located in the discrete regions of the Nr4a1 promoter, which contain binding sites for several transcription factors such as AP1, CREB, and MEF2. We found that one of the three AP1/CRE sites located at -255 bp is the most responsive to the Ca(2+) signaling pathway as are the two MEF2 binding sites at -315 and -285 bp. Furthermore, we found that the hormone-induced recruitment of phospho-CREB and of the co-activator p300 to the Nr4a1 promoter requires the Ca(2+) pathway. Lastly, siRNA-mediated knockdown of CREB impaired NR4A1 expression and steroidogenesis. Together, our data indicate that the Ca(2+) signaling pathway increases Nr4a1 expression in MA-10 Leydig cells, at least in part, by enhancing the recruitment of coactivator most likely through the MEF2, AP1, and CREB transcription factors thus demonstrating an important interplay between the Ca(2+) and cAMP pathways in regulating Nr4a1 expression.


Journal of Molecular Histology | 2010

Expression of ladybird-like homeobox 2 (LBX2) during ovarian development and folliculogenesis in the mouse

Vanessa Moisan; Nicholas M. Robert; Jacques J. Tremblay

The Ladybird-like homeobox gene 2 (Lbx2) belongs to the homeodomain-containing family of transcription factor that are known to play crucial role in various developmental processes. During early mouse embryogenesis, Lbx2 was shown to be expressed in the developing eye, brain and urogenital system. Although Lbx2 was detected in the testis and epididymis throughout development, no data was available regarding its expression in the female gonad. Here we have determined Lbx2 expression throughout mouse ovarian development by in situ hybridization. In contrast to the strong expression in the male fetal gonad, no Lbx2 signal could be detected in the fetal ovary. Soon after birth, however, Lbx2 expression was detected at different levels in various ovarian compartments (oocyte, granulosa cells, theca cells) where its expression was highly dynamic depending on the stage of follicular maturation. Our data would be consistent with a role for LBX2 in ovarian maturation and folliculogenesis.


Molecular Endocrinology | 2005

GATA Factors and the Nuclear Receptors, Steroidogenic Factor 1/Liver Receptor Homolog 1, Are Key Mutual Partners in the Regulation of the Human 3β-Hydroxysteroid Dehydrogenase Type 2 Promoter

Luc J. Martin; Hiroaki Taniguchi; Nicholas M. Robert; Jacques Simard; Jacques J. Tremblay; Robert S. Viger


Endocrinology | 2002

Friend of GATA (FOG)-1 and FOG-2 differentially repress the GATA-dependent activity of multiple gonadal promoters.

Nicholas M. Robert; Jacques J. Tremblay; Robert S. Viger

Collaboration


Dive into the Nicholas M. Robert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge