Robert S. Viger
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert S. Viger.
Molecular Endocrinology | 2008
Robert S. Viger; Séverine Mazaud Guittot; Mikko Anttonen; David B. Wilson; Markku Heikinheimo
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Biology of Reproduction | 2001
Jacques J. Tremblay; Robert S. Viger
Abstract A crucial step in mammalian sex differentiation is the regression of the Müllerian ducts in males. This is achieved through the action of Müllerian inhibiting substance (MIS), a key hormone produced by fetal Sertoli cells. Proper spatiotemporal expression of the MIS gene requires the concerted action of several transcription factors that include Sox9, SF-1, WT-1, GATA-4, and Dax-1. Indeed, SF-1 contributes to MIS gene expression by transcriptionally cooperating with other factors such as GATA-4 and WT-1. Dax-1 is coexpressed with SF-1 in many tissues, including the gonads, where it acts as a negative modulator of SF-1-dependent transcription. We now report that Dax-1 can repress MIS transcription in Sertoli cells by disrupting transcriptional synergism between GATA-4 and SF-1. Dax-1-mediated repression of GATA-4/SF-1 synergism did not involve direct repression of GATA-dependent transactivation, but rather, it occurred through a direct protein-protein interaction with DNA-bound SF-1. It is interesting that SF-1, Dax-1, and GATA factors are coexpressed in several tissues such as the pituitary, the adrenals, and the gonads. Because we have shown that other GATA family members also have the ability to synergize with SF-1, Dax-1 repression of GATA/SF-1 synergism may represent an important mechanism for fine-tuning the regulation of SF-1-dependent genes in multiple target tissues.
The Journal of Steroid Biochemistry and Molecular Biology | 2003
Jacques J. Tremblay; Robert S. Viger
Steroidogenesis is a tightly regulated process that is dependent on pituitary hormones. In steroidogenic tissues, hormonal stimulation triggers activation of an intracellular signalling pathway that typically involves cAMP production, activation of PKA, and phosphorylation of target transcription factors. In the classic cAMP signalling pathway, phosphorylation of CREB (cAMP response element (CRE)-binding protein) and its subsequent binding to cAMP-response elements (CREs) in the regulatory regions of target genes play a key role in mediating cAMP responsiveness. However, the cAMP responsive regions of several genes expressed in steroidogenic tissues do not contain consensus CREs indicating that other transcription factors are also involved. We have been studying the role played by the GATA family of transcription factors. GATA factors are expressed in a variety of tissues including the adrenals and gonads. Since the regulatory regions of several steroidogenic genes contain GATA elements, we have proposed that GATA factors, particularly GATA-4 and GATA-6, might represent novel downstream effectors of hormonal signalling in steroidogenic tissues. In vitro experiments have revealed that GATA-4 is indeed phosphorylated in steroidogenic cells and that phosphorylation levels are rapidly induced by cAMP. GATA-4 phosphorylation is mediated by PKA. Phosphorylation increases GATA-4 DNA-binding activity and enhances its transcriptional properties on multiple steroidogenic promoters. We now define a new molecular mechanism whereby phospho-GATA factors contribute to increased transcription of steroidogenic genes in response to hormonal stimulation.
Biology of Reproduction | 2003
Nicolas Pilon; Isabelle Daneau; Véronique Paradis; Frédéric Hamel; Jacques G. Lussier; Robert S. Viger; David W. Silversides
Abstract To study the process of mammalian sex determination and in particular to further understand the mechanisms of transcriptional regulation of the SRY gene, we have isolated a 4.5-kilobase (kb) pig SRY 5′ flanking sequence. To facilitate the in vitro analysis of these sequences, we have generated a porcine genital ridge (PGR) cell line (9E11) that expresses SRY as well as SOX9, steroidogenic factor-1 (SF-1), and DAX1. Via primer extension analysis on RNA from this cell line, a transcription start site for porcine SRY was identified at −661 base pairs (bps) 5′ from the translation initiation site. Deletion studies of the SRY 5′ flanking sequences in PGR 9E11 cells demonstrated that −1.4 kb of 5′ flanking sequences retained full transcriptional activity compared with the −4.5 kb fragment, but that transcriptional activity fell when further deletions were made. Sequences downstream of the transcriptional start site are important for promoter activity, because deleting transcribed but not translated sequences eliminated promoter activity. Sequence analysis of the −1.4 kb fragment identified two potential binding sites for SF-1, at −1369 and at −290 from the ATG. To address the role of SF-1 transactivation in SRY promoter activity, mutagenesis studies of the potential SF-1 binding sites were performed and revealed that these sites were indeed important for SRY promoter activity. Cotransfection studies in a heterologous cell system (mouse CV-1 cells) demonstrated that pig SF-1 was able to transactivate the pig SRY promoter. Gel shift assays confirmed that the upstream site was recognized by mouse SF-1 protein. We conclude that two sites for SF-1 transactivation exist within the pig SRY promoter, at −1369 bp and at −290 bp, and that the site at −1369 bp is quantitatively the most important.
Vitamins and Hormones Series | 2005
Robert S. Viger; David W. Silversides; Jacques J. Tremblay
In mammals, sex development is a genetically and hormonally controlled process that begins with the establishment of chromosomal or genetic sex (XY or XX) at conception. At approximately 6 to 7 weeks of human gestation or embryonic day e11.5 in the mouse, expression of the Y chromosome-linked sex determining gene called SRY (described in detail in this chapter) then initiates gonadal differentiation, which is the formation of either a testis (male) or an ovary (female). Male sex differentiation (development of internal and external reproductive organs and acquisition of male secondary sex characteristics) is then controlled by three principal hormones produced by the testis: Mullerian inhibiting substance (MIS) or anti-Mullerian hormone (AMH), testosterone, and insulin-like factor 3 (INSL3). In the absence of these critical testicular hormones, female sex differentiation ensues. This sequential, three-step process of mammalian sex development is also known as the Jost paradigm. With the advent of modern biotechnologies over the past decade, such as transgenics, array-based gene profiling, and proteomics, the field of mammalian sex determination has witnessed a remarkable boost in the understanding of the genetics and complex molecular mechanisms that regulate this fundamental biological event. Consequently, a number of excellent reviews have been devoted to this topic. The purpose of the present chapter is to provide an overview of selected aspects of mammalian sex determination and differentiation with an emphasis on studies that have marked this field of study.
Biology of Reproduction | 2007
Séverine Mazaud Guittot; Amélie Tétu; Éric Legault; Nicolas Pilon; David W. Silversides; Robert S. Viger
Abstract The GATA4 transcription factor is an important developmental determinant for many organs, such as the heart, gut, and testis. Despite this pivotal role, our understanding of the transcriptional mechanisms that control the proper spatiotemporal expression of the GATA4 gene remains limited. We have generated transgenic mice expressing a green fluorescent protein (GFP) marker under the control of rat Gata4 5′ flanking sequences. Several GATA4-expressing organs displayed GFP fluorescence, including the heart, intestine, and pancreas. In the gonads, while GATA4 is expressed in pregranulosa, granulosa, and theca ovarian cells, and Sertoli, Leydig, and peritubular testicular cells, the first 5 kb of Gata4 regulatory sequences immediately upstream of exon 1 were sufficient to direct GFP reporter expression only in testis and, specifically, in Sertoli cells. Onset of GFP expression occurred after Sertoli cell commitment and was maintained in these cells throughout development to adulthood. In vitro studies revealed that the first 118 bp of the Gata4 promoter is sufficient for full basal activity in several GATA4-expressing cell lines. Promoter mutagenesis and DNA-binding experiments identified two GC-box motifs and, particularly, one E-box element within this −118-bp region that are crucial for its activity. Further analysis revealed that members of the USF family of transcription factors, especially USF2, bind to and activate the Gata4 promoter via this critical E-box motif.
Developmental Dynamics | 2008
Nicolas Pilon; Diana L. Raiwet; Robert S. Viger; David W. Silversides
GATA4 is a transcription factor known to be important for the development of many organs such as the heart, intestine, and gonads. However, information regarding the control of its expression is only now beginning to emerge. To further understand the regulation of Gata4 expression during mouse embryonic development, we have generated a novel knockin allele allowing expression of the Cre recombinase under the control of Gata4 regulatory sequences. When these Gata4Cre/+ mice were crossed with the Cre reporter mouse R26R‐YFP, we surprisingly found widespread mosaic YFP expression in e10.0 embryos. This particular expression pattern was traced back to the e5.5 stage via a cell lineage study, suggesting activation of transcription at the Gata4 locus around the blastocyst stage. In accordance with this hypothesis, we found that Gata4 is expressed in cultured embryonic stem (ES) cells and within the inner cell mass (ICM) of e4.5 blastocysts. Interestingly, such early Gata4 transcription can be recapitulated in transgenic reporter studies using 5 kb of the proximal rat Gata4 promoter. During mouse development, these 5‐kb regulatory sequences were previously reported to direct reporter gene expression to Sertoli cells of the testes [Mazaud Guittot et al. ( 2007 ) Biol Reprod 76:85–95]. We now show that these regulatory sequences can also drive robust fluorescent reporter gene expression in migratory neural crest cells. Comparisons to Wnt1‐Cre‐mediated YFP labelling of neural crest cells suggest that most of the migratory neural crest cells are labelled in e9.5 to e11.5 Gata4p[5kb]‐RFP or ‐GFP embryos. Analysis of GFP transcription via whole‐mount in situ hybridization in e10.5 and e11.5 embryos demonstrated that the 5‐kb Gata4 promoter is preferentially active in cells of the boundary caps at the dorsal root entry zone and motor exit points flanking the neural tube. RT‐PCR gene expression analysis of FACS‐purified GFP‐positive cells from e9.5 Gata4p[5kb]‐GFP embryos revealed co‐expression of Gata4 with many neural crest stem cell markers. Together with sphere‐forming and differentiation cell culture assays, our results indicate that the Gata4 promoter is active within at least a subset of the neural crest stem cells. Taken altogether, our studies have revealed new Gata4 expression patterns during mouse embryonic development, which are controlled by its 5‐kb proximal 5′ flanking sequences. Developmental Dynamics 237:1133–1143, 2008.
Biology of Reproduction | 2011
Liesl Nel-Themaat; Chuan Wei Jang; M. David Stewart; Haruhiko Akiyama; Robert S. Viger; Richard R. Behringer
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.
Molecular and Cellular Endocrinology | 2006
Nicholas M. Robert; Yoko Miyamoto; Hiroaki Taniguchi; Robert S. Viger
Abstract Inhibin α is the common subunit of the dimeric inhibin proteins known for their role in suppressing pituitary FSH secretion. In this study, we have examined the role of GATA factors and the nuclear receptor, LRH-1/NR5A2, in the regulation of inhibin α-subunit promoter activity. The inhibin α promoter contains two GATA-binding motifs that can be activated by GATA4 or GATA6. The GATA-dependence of the promoter was demonstrated by downregulating GATA expression in MA-10 cells using siRNA technology. We next examined whether GATA factors could cooperate with LRH-1, a factor recently proposed to be an important regulator of inhibin α-subunit transcription. Both GATA4 and GATA6 strongly synergized with LRH-1. Consistent with the cAMP-dependence of the inhibin α-subunit promoter, GATA/LRH-1 synergism was markedly enhanced by PKA and the co-activator protein CBP. Thus, our results identify LRH-1 as a new transcriptional partner for GATA factors in the regulation of inhibin α-subunit gene expression.
Molecular Reproduction and Development | 2009
Hiroaki Taniguchi; Junichi Komiyama; Robert S. Viger; Kiyoshi Okuda
The corpus luteum (CL) is the major site of progesterone (P4) production during the luteal phase of the estrous cycle in cattle. To better understand the molecular mechanisms underlying P4 production, we compared the mRNA and protein expression profiles of key components of the steroidogenic pathway (StAR, CYP11A, and 3β‐HSD) during the bovine CL luteal phase with that of several transcription factors (NR5A1, NR5A2, GATA4, GATA6) known for their roles in the control of steroidogenic gene expression. In the bovine CL, StAR, CYP11A, and 3β‐HSD mRNA and protein levels remained constant at the mid and late luteal phases but markedly declined at the regressed luteal stage. NR5A1 and NR5A2 exhibited a similar pattern with a significant decrease in expression at the regressed luteal stage. Both GATA4 and GATA6 mRNA and proteins could be detected in bovine CL; GATA6 levels, however, were generally higher. Although GATA4 expression did not change during the luteal phase, GATA6 showed a marked decrease at the regressed luteal stage, like NR5A1, NR5A2, and the other steroidogenic markers. Thus, we suggest that NR5A1, NR5A2, and GATA6, but not GATA4, contribute to the transcriptional regulation of steroidogenic gene expression, and hence P4 production, in the bovine CL. Furthermore, we have demonstrated the association of NR5A1 and NR5A2 with the bovine StAR promoter in the mid‐luteal CL using chromatin immunoprecipitation, suggesting that these factors have definitive roles in the regulation of StAR gene transcription in vivo. Mol. Reprod. Dev. 76: 873–880, 2009.