Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Pelon is active.

Publication


Featured researches published by Jacques Pelon.


Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space | 2003

The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds

David M. Winker; Jacques Pelon; M. Patrick McCormick

Current uncertainties in the effects of aerosols and clouds on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. The CALIPSO satellite will use an active lidar together with passive instruments to provide vertical profiles of aerosols and clouds and their properties which will help address these uncertainties. CALIPSO will fly in formation with the EOS Aqua and CloudSat satellites and the other satellites of the Aqua constellation. The acquisition of simultaneous and coincident observations will allow numerous synergies to be realized by combining CALIPSO observations with complementary observations from other platforms. In particu-lar, cloud observations from the CALIPSO lidar and the CloudSat radar will be complementary, together encompassing the variety of clouds found in the atmosphere, from thin cirrus to deep convective clouds. CALIPSO is being developed within the framework of a collaboration between NASA and CNES and is scheduled for launch in 2004.


Bulletin of the American Meteorological Society | 2010

The CALIPSO Mission: A Global 3D View of Aerosols and Clouds

D. M. Winker; Jacques Pelon; J. A. Coakley; Steven A. Ackerman; R. J. Charlson; P. R. Colarco; Pierre H. Flamant; Q. Fu; R. M. Hoff; C. Kittaka; T. L. Kubar; H. Le Treut; M. P. Mccormick; G. Mégie; Lamont R. Poole; Kathleen A. Powell; C. R. Trepte; Mark A. Vaughan; B. A. Wielicki

Aerosols and clouds have important effects on Earths climate through their effects on the radiation budget and the cycling of water between the atmosphere and Earths surface. Limitations in our understanding of the global distribution and properties of aerosols and clouds are partly responsible for the current uncertainties in modeling the global climate system and predicting climate change. The CALIPSO satellite was developed as a joint project between NASA and the French space agency CNES to provide needed capabilities to observe aerosols and clouds from space. CALIPSO carries CALIOP, a two-wavelength, polarization-sensitive lidar, along with two passive sensors operating in the visible and thermal infrared spectral regions. CALIOP is the first lidar to provide long-term atmospheric measurements from Earths orbit. Its profiling and polarization capabilities offer unique measurement capabilities. Launched together with the CloudSat satellite in April 2006 and now flying in formation with the A-train satellite constellation, CALIPSO is now providing information on the distribution and properties of aerosols and clouds, which is fundamental to advancing our understanding and prediction of climate. This paper provides an overview of the CALIPSO mission and instruments, the data produced, and early results.


Bulletin of the American Meteorological Society | 2007

Cloudnet: Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations

Anthony J. Illingworth; Robin J. Hogan; Ewan J. O'Connor; Dominique Bouniol; Malcolm E. Brooks; Julien Delanoë; David P. Donovan; J.D. Eastment; Nicolas Gaussiat; J.W.F. Goddard; Martial Haeffelin; H. Klein Baltink; Oleg A. Krasnov; Jacques Pelon; J.-M. Piriou; Alain Protat; H.W.J. Russchenberg; A. Seifert; Adrian M. Tompkins; G.-J. van Zadelhoff; F. Vinit; Ulrika Willén; Damian R. Wilson; C. L. Wrench

Cloud fraction, liquid and ice water contents derived from long-term radar, lidar and microwave radiometer data are systematically compared to models to quantify and improve their performance.


Journal of Geophysical Research | 2003

Long‐range transport of Saharan dust to northern Europe: The 11–16 October 2001 outbreak observed with EARLINET

Albert Ansmann; Jens Bösenberg; Anatoli Chaikovsky; Adolfo Comeron; Sabine Eckhardt; Ronald Eixmann; Volker Freudenthaler; Paul Ginoux; L. Komguem; Holger Linné; Miguel Ángel López Márquez; Volker Matthias; Ina Mattis; Valentin Mitev; Detlef Müller; Svetlana Music; Slobodan Nickovic; Jacques Pelon; Laurent Sauvage; Piotr Sobolewsky; Manoj K. Srivastava; Andreas Stohl; Omar Torres; G. Vaughan; Ulla Wandinger; Matthias Wiegner

The spread of mineral particles over southwestern, western, and central Europe resulting from a strong Saharan dust outbreak in October 2001 was observed at 10 stations of the European Aerosol Research Lidar Network (EARLINET). For the first time, an optically dense desert dust plume over Europe was characterized coherently with high vertical resolution on a continental scale. The main layer was located above the boundary layer (above 1-km height above sea level (asl)) up to 3–5-km height, and traces of dust particles reached heights of 7–8 km. The particle optical depth typically ranged from 0.1 to 0.5 above 1-km height asl at the wavelength of 532 nm, and maximum values close to 0.8 were found over northern Germany. The lidar observations are in qualitative agreement with values of optical depth derived from Total Ozone Mapping Spectrometer (TOMS) data. Ten-day backward trajectories clearly indicated the Sahara as the source region of the particles and revealed that the dust layer observed, e.g., over Belsk, Poland, crossed the EARLINET site Aberystwyth, UK, and southern Scandinavia 24–48 hours before. Lidar-derived particle depolarization ratios, backscatter- and extinction-related Angstrom exponents, and extinction-to-backscatter ratios mainly ranged from 15 to 25%, −0.5 to 0.5, and 40–80 sr, respectively, within the lofted dust plumes. A few atmospheric model calculations are presented showing the dust concentration over Europe. The simulations were found to be consistent with the network observations.


Applied Optics | 1999

Urban boundary-layer height determination from lidar measurements over the paris area.

Laurent Menut; Cyrille Flamant; Jacques Pelon; Pierre H. Flamant

The Paris area is strongly urbanized and is exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in this area it is necessary to describe correctly the atmospheric boundary-layer (ABL) dynamics and the ABL height evolution. During the winter of 1994-1995, within the framework of the Etude de la Couche Limite Atmosphérique en Agglomération Parisienne (ECLAP) experiment, the vertical structure of the ABL over Paris and its immediate suburbs was extensively documented by means of lidar measurements. We present methods suited for precise determination of the ABL structures temporal evolution in a dynamic environment as complex as the Paris area. The purpose is to identify a method that can be used on a large set of lidar data. We compare commonly used methods that permit ABL height retrievals from backscatter lidar signals under different meteorological conditions. Incorrect tracking of the ABL depths diurnal cycle caused by limitations in the methods is analyzed. The study uses four days of the ECLAP experiment characterized by different meteorological and synoptic conditions.


Journal of Geophysical Research | 2003

Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE)

Didier Tanré; James M. Haywood; Jacques Pelon; J.-F. Leon; B. Chatenet; P. Formenti; Pete N. Francis; Philippe Goloub; Eleanor J. Highwood; Gunnar Myhre

[1] Aerosols are known to be important in determining Earth’s radiative balance. Dust aerosols are of particular interest since, in addition to their scattering and absorbing properties that affect the solar radiation, they also perturb the terrestrial radiation. Recent studies have shown that a significant proportion of mineral dust in the atmosphere may be of anthropogenic origin, and therefore they may have an important role in climate change by exerting a significant radiative forcing. However, the optical and radiative properties of dust are not yet very well-determined, and even the sign of the resulting forcing is still questionable. The Saharan Dust Experiment (SHADE) was designed to better determine the parameters that are relevant for computing the direct radiative effect. Two aircraft combining in situ and remote sensing instruments were coordinated with satellite overpasses and ground-based observations during the experiment, which was based in the Cape Verde area during the period 19–29 September 2000. These in situ and remotely sensed data provide new valuable information on the microphysical, optical properties, and radiative effects of a large mineral dust outbreak. In addition, a global chemical transport model was used for assessing the radiative impact of these events, which are shown to be important on regional and global scales. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 3360 Meteorology and Atmospheric Dynamics: Remote sensing; KEYWORDS: Saharan dust, physical and optical properties, dust direct radiative forcing


Journal of Atmospheric and Oceanic Technology | 2007

STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data

Yohann Morille; Martial Haeffelin; Philippe Drobinski; Jacques Pelon

Today several lidar networks around the world provide large datasets that are extremely valuable for aerosol and cloud research. Retrieval of atmospheric constituent properties from lidar profiles requires detailed analysis of spatial and temporal variations of the signal. This paper presents an algorithm called Structure of the Atmosphere (STRAT), which is designed to retrieve the vertical distribution of cloud and aerosol layers in the boundary layer and through the free troposphere and to identify near-particle-free regions of the vertical profile and the range at which the lidar signal becomes too attenuated for exploitation, from a single lidar channel. The paper describes each detection method used in the STRAT algorithm and its application to a tropospheric backscatter lidar operated at the SIRTA observatory, in Palaiseau, 20 km south of Paris, France. STRAT retrievals are compared to other means of layer detection and classification; retrieval performances and uncertainties are discussed.


Journal of Geophysical Research | 1995

Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post‐volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo

P. Chazette; C. David; J. Lefrère; S. Godin; Jacques Pelon; G. Mégie

The spatiotemporal evolution of aerosols formed from precursors injected into the stratosphere by major volcanic eruptions, such as those of El Chichon in 1982 and Mount Pinatubo in 1991, has been studied using a ground-based lidar system located at the Observatoire de Haute-Provence (OHP) in southern France (44°N, 5°E). From the inversion of the lidar signals the optical, geometrical and dynamical properties of the particles have been determined as a function of time after the eruption. In immediate post-volcanic conditions, when the optical thickness of particles in the stratosphere is largely enhanced, an estimate of the aerosols backscatter phase function has been evaluated directly from the lidar measurements, using a size-distribution model adjusted to in situ balloon measurements. The precision of this determination lies in the ±15% range. Values of the mean radius of the particles, of their integrated content, surface areas, and sedimentation velocities are then derived from the systematic lidar measurements performed at OHP. These values are compared for the two major volcanic eruptions which have occurred over the last decade. Although the injection of sulphur dioxide was twice as large for the Mount Pinatubo eruption as compared to the El Chichon case, the diffusion of the cloud in the two hemispheres due to the interaction of the particular phase of the quasi-biennal oscillation with several other dynamical processes at the time of the eruption, led to the observation of similar values for the aerosol content over the Observatoire de Haute-Provence in the months just following the two events. However, the residence time of the particles in atmospheric layers below 20 km are 4 months longer after the Mount Pinatubo eruption, caused by the observed difference in the initial vertical distribution of the aerosol cloud.


Applied Optics | 1990

Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere.

A. Papayannis; Gérard Ancellet; Jacques Pelon; G. Mégie

To study the ozone spatial and temporal evolution in the atmosphere, lidar systems have proved to be adequate but have remained complex. We define in this paper the main characteristics of a UVDIAL system for ground based and airborne ozone measurements in the troposphere and the lower stratosphere both for daytime and nighttime operation. A multiwavelength lidar system using either Rayleigh/Mie signals or the Raman nitrogen signal, is discussed as a way to efficiently correct the ozone measurements from the systematic bias due to aerosol and other interference gases (i.e. SO(2)) in the lower troposphere. Two types of lasers (solid state and excimer) are compared, as both lasers are suitable for long term field operation and airborne use.


Journal of Geophysical Research | 2001

Large-scale advection of continental aerosols during INDOEX

J.F Léon; Patrick Chazette; F. Dulac; Jacques Pelon; Cyrille Flamant; M. Bonazzola; Gilles Foret; Stephane C. Alfaro; H. Cachier; S. Cautenet; E. Hamonou; A. Gaudichet; L. Gomes; Jean-Louis Rajot; F. Lavenu; S.R. Inamdar; P. R. Sarode; J. S. Kadadevarmath

In this paper, we present passive and active remote sensing measurements of atmospheric aerosols over the North Indian Ocean (NIO) during the Intensive Field Phase (IFP, January to March 1999) of the Indian Ocean Experiment. The variability of the aerosol load over NIO is discussed based on three-dimentional numerical simulations made at a local scale by use of Regional Atmospheric Modeling System (RAMS) and at a regional scale using the zoomed Laboratoire de Meteorologie Dynamique global circulation model (LMD-Z version 3.3). Ground-based measurements of the columnar aerosol optical thickness (AOT) and of surface black carbon (BC) concentration were carried out at two different sites in India: Goa University on the NIO coast and Dharwar 150 km inland. Local-scale investigations point out that the trend in BC concentration at the ground is not correlated with AOT. Lidar profiles obtained both from the surface at Goa and in the NIO from the Mystere-20 research aircraft indicate that a significant contribution to the total AOT (more than 50%) is due to a turbid monsoon layer located between 1 and 3 km height. RAMS simulation shows that the advection of aerosols in the monsoon layer is due to the conjunction of land-sea breeze and topography. We present the regional-scale extent of the aerosol plume in terms of AOT derived from the visible channel of Meteosat-5. During March, most of the Bay of Bengal is overcast by a haze with a monthly average AOT of 0.61±0.18, and a spatially well-defined aerosol plume is spreading from the Indian west coast to the Intertropical Convergence Zone with an average AOT of 0.49±0.08. Those values are bigger than in February with AOT at 0.35±0.18 and 0.37±0.09 for the Bay of Bengal and the Arabian Sea, respectively. One of the principal findings of this paper is that a significant contribution to the aerosol load over the NIO is due to the advection of continental aerosols from India in a well-identified monsoon layer above the marine boundary layer. Moreover, it is suggested that the increase in biomass burning plays a significant role in the increasing trend in AOT during the winter dry monsoon season.

Collaboration


Dive into the Jacques Pelon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Garnier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Chazette

French Alternative Energies and Atomic Energy Commission

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongxiang Hu

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damien Josset

Pierre-and-Marie-Curie University

View shared research outputs
Researchain Logo
Decentralizing Knowledge