Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaecheol Lee is active.

Publication


Featured researches published by Jaecheol Lee.


Cell Stem Cell | 2015

Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy

Haodi Wu; Jaecheol Lee; Ludovic G. Vincent; Qingtong Wang; Mingxia Gu; Feng Lan; Jared M. Churko; Karim Sallam; Elena Matsa; Arun Sharma; Joseph D. Gold; Adam J. Engler; Yang K. Xiang; Donald M. Bers; Joseph C. Wu

β-adrenergic signaling pathways mediate key aspects of cardiac function. Its dysregulation is associated with a range of cardiac diseases, including dilated cardiomyopathy (DCM). Previously, we established an iPSC model of familial DCM from patients with a mutation in TNNT2, a sarcomeric protein. Here, we found that the β-adrenergic agonist isoproterenol induced mature β-adrenergic signaling in iPSC-derived cardiomyocytes (iPSC-CMs) but that this pathway was blunted in DCM iPSC-CMs. Although expression levels of several β-adrenergic signaling components were unaltered between control and DCM iPSC-CMs, we found that phosphodiesterases (PDEs) 2A and PDE3A were upregulated in DCM iPSC-CMs and that PDE2A was also upregulated in DCM patient tissue. We further discovered increased nuclear localization of mutant TNNT2 and epigenetic modifications of PDE genes in both DCM iPSC-CMs and patient tissue. Notably, pharmacologic inhibition of PDE2A and PDE3A restored cAMP levels and ameliorated the impaired β-adrenergic signaling of DCM iPSC-CMs, suggesting therapeutic potential.


Science Translational Medicine | 2014

Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system

Antje D. Ebert; Kazuki Kodo; Ping Liang; Haodi Wu; Bruno C. Huber; Johannes Riegler; Jared M. Churko; Jaecheol Lee; Patricia E. de Almeida; Feng Lan; Sebastian Diecke; Paul W. Burridge; Joseph D. Gold; Daria Mochly-Rosen; Joseph C. Wu

The decrease of function in the ALDH2*2 genotype disrupts an important cardioprotective oxidative stress regulatory circuit, thus increasing cardiac cell death after ischemic insult. Personalized Heart Healing In poetry, we welcome assaults to the heart that leave one breathless. But depriving actual heart tissue of oxygen—through decreased blood flow—can cause irreparable damage. The human genome houses ALDH2, a gene that encodes the heart-protective metabolic enzyme aldehyde dehydrogenase 2. But ~8% of the human population carries an inactivating gene polymorphism (ALDH2*2) that has been linked to enhanced severity of damage from cardiac ischemia—a shortage in the heart’s oxygen supply—and an increased risk of coronary artery disease (CAD). Now, Ebert et al. investigate the mechanisms underlying these ALDH2*2-associated maladies using a human cellular model of the ALDH2*2 genotype made with induced pluripotent stem cell–derived cardiomyocytes generated from patient fibroblasts. The authors found that ALDH2 regulated cell survival by modulating oxidative stress, a circuit that was dysfunctional in ALDH2*2 cells. This aberration induced cell cycle arrest and enhanced apoptosis in cardiomyocytes after ischemic insult, illuminating a new function for ALDH2 in cell survival decisions. Such mechanistic insights may spur the development of new diagnostic methods for and improved risk management of CAD as well as genotype-specific cardiac therapies. Now, if we can only find a cure for the poetic broken heart…. Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies.


Arthritis Research & Therapy | 2014

Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis

Jaecheol Lee; Youngkyun Kim; Hyoju Yi; Sebastian Diecke; Juryun Kim; Hyerin Jung; Yeri Alice Rim; Seung Min Jung; Myungshin Kim; Yong Goo Kim; Sung-Hwan Park; Ho-Youn Kim; Ji Hyeon Ju

IntroductionSince the concept of reprogramming mature somatic cells to generate induced pluripotent stem cells (iPSCs) was demonstrated in 2006, iPSCs have become a potential substitute for embryonic stem cells (ESCs) given their pluripotency and “stemness” characteristics, which resemble those of ESCs. We investigated to reprogram fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) to generate iPSCs using a 4-in-1 lentiviral vector system.MethodsA 4-in-1 lentiviral vector containing Oct4, Sox2, Klf4, and c-Myc was transduced into RA and OA FLSs isolated from the synovia of two RA patients and two OA patients. Immunohistochemical staining and real-time PCR studies were performed to demonstrate the pluripotency of iPSCs. Chromosomal abnormalities were determined based on the karyotype. SCID-beige mice were injected with iPSCs and sacrificed to test for teratoma formation.ResultsAfter 14 days of transduction using the 4-in-1 lentiviral vector, RA FLSs and OA FLSs were transformed into spherical shapes that resembled embryonic stem cell colonies. Colonies were picked and cultivated on matrigel plates to produce iPSC lines. Real-time PCR of RA and OA iPSCs detected positive markers of pluripotency. Immunohistochemical staining tests with Nanog, Oct4, Sox2, Tra-1-80, Tra-1-60, and SSEA-4 were also positive. Teratomas that comprised three compartments of ectoderm, mesoderm, and endoderm were formed at the injection sites of iPSCs. Established iPSCs were shown to be compatible by karyotyping. Finally, we confirmed that the patient-derived iPSCs were able to differentiate into osteoblast, which was shown by an osteoimage mineralization assay.ConclusionFLSs derived from RA and OA could be cell resources for iPSC reprogramming. Disease- and patient-specific iPSCs have the potential to be applied in clinical settings as source materials for molecular diagnosis and regenerative therapy.


European Heart Journal | 2015

Pravastatin reverses obesity-induced dysfunction of induced pluripotent stem cell-derived endothelial cells via a nitric oxide-dependent mechanism

Mingxia Gu; Nicholas M. Mordwinkin; Nigel G. Kooreman; Jaecheol Lee; Haodi Wu; Shijun Hu; Jared M. Churko; Sebastian Diecke; Paul W. Burridge; Chunjiang He; Frances E. Barron; Sang Ging Ong; Joseph D. Gold; Joseph C. Wu

AIMS High-fat diet-induced obesity (DIO) is a major contributor to type II diabetes and micro- and macro-vascular complications leading to peripheral vascular disease (PVD). Metabolic abnormalities of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from obese individuals could potentially limit their therapeutic efficacy for PVD. The aim of this study was to compare the function of iPSC-ECs from normal and DIO mice using comprehensive in vitro and in vivo assays. METHODS AND RESULTS Six-week-old C57Bl/6 mice were fed with a normal or high-fat diet. At 24 weeks, iPSCs were generated from tail tip fibroblasts and differentiated into iPSC-ECs using a directed monolayer approach. In vitro functional analysis revealed that iPSC-ECs from DIO mice had significantly decreased capacity to form capillary-like networks, diminished migration, and lower proliferation. Microarray and ELISA confirmed elevated apoptotic, inflammatory, and oxidative stress pathways in DIO iPSC-ECs. Following hindlimb ischaemia, mice receiving intramuscular injections of DIO iPSC-ECs had significantly decreased reperfusion compared with mice injected with control healthy iPSC-ECs. Hindlimb sections revealed increased muscle atrophy and presence of inflammatory cells in mice receiving DIO iPSC-ECs. When pravastatin was co-administered to mice receiving DIO iPSC-ECs, a significant increase in reperfusion was observed; however, this beneficial effect was blunted by co-administration of the nitric oxide synthase inhibitor, N(ω)-nitro-l-arginine methyl ester. CONCLUSION This is the first study to provide evidence that iPSC-ECs from DIO mice exhibit signs of endothelial dysfunction and have suboptimal efficacy following transplantation in a hindlimb ischaemia model. These findings may have important implications for future treatment of PVD using iPSC-ECs in the obese population.


Circulation Research | 2017

A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell–Based Models for Cardiovascular Diseases

Ioannis Karakikes; Vittavat Termglinchan; Diana Cepeda; Jaecheol Lee; Sebastian Diecke; Ayal Hendel; Ilanit Itzhaki; Mohamed Ameen; Rajani Shrestha; Haodi Wu; Ning Ma; Ning-Yi Shao; Timon Seeger; Nicole A. Woo; Kitchener D. Wilson; Elena Matsa; Matthew H. Porteus; Vittorio Sebastiano; Joseph C. Wu

Rationale: Targeted genetic engineering using programmable nucleases such as transcription activator–like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN–mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt–Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusions: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.


Biomaterials | 1991

Modulation of the membrane surrounding particulate cement and polyethylene in the rabbit tibia

Stuart B. Goodman; Jaecheol Lee; R.C. Chin; S.S. Chiou

Twenty-nine mature New Zealand white, female rabbits were divided into four groups. Using sterile technique, a 6 mm drill hole was made in the tibia 1 cm distal to the knee joint. The marrow was scooped out underneath the hole. The right tibia received Simplex particulate cement polymer (PMMA) (groups 1 and 2) or polyethylene particles (UHMWP) (groups 3 and 4). The left leg functioned as a prepared but non-implanted control. All animals were fed a standard diet; those in groups 1 and 3 received plain water, while groups 2 and 4 drank water in which sodium naproxen was dissolved (1.375 mg/ml). Animals were killed after 16 wk. The implant area was harvested and grown in tissue culture. The cumulative collection of tissue culture supernatants over 3 d was assayed for prostaglandin E2 (PGE2) via radioimmunoassay. PGE2 production was significantly higher in the membrane harvested from the right side containing particulate cement with no sodium naproxen (group 1) compared with controls (P less than 0.05). The ratio of PGE2 values for the right divided by the left side yielded higher values in group 1, compared with groups 2, 3 or 4 (P less than 0.01). Previous studies have suggested that particulate debris and PGE2 production are associated with arthroplasty loosening. This experiment has demonstrated that PGE2 production by the membrane surrounding particulate debris can be suppressed by the administration of oral sodium naproxen. Because non-steroidal anti-inflammatory drugs are known to inhibit prostaglandin synthesis in man, these agents may prove useful in retarding the bone loss associated with early prosthetic loosening.


Stem Cells and Development | 2015

Epigenetic activation of the Foxa2 gene is required for maintaining the potential of neural precursor cells to differentiate into dopaminergic neurons after expansion.

So-Young Bang; So Hee Kwon; Sang-Hoon Yi; Sang Ah Yi; Eun Kyung Park; Jaecheol Lee; Choon-Gon Jang; Jueng Soo You; Sang-Hun Lee; Jeung-Whan Han

Dysregulation of forkhead box protein A2 (Foxa2) expression in fetal ventral mesencephalon (VM)-derived neural precursor cells (NPCs) appears to be associated with the loss of their potential to differentiate into dopaminergic (DA) neurons after mitogenic expansion in vitro, hindering their efficient use as a transplantable cell source. Here, we report that epigenetic activation of Foxa2 in VM-derived NPCs by inducing histone hyperacetylation rescues the mitogenic-expansion-dependent decrease of differentiation potential to DA neurons. The silencing of Foxa2 gene expression after expansion is accompanied by repressive histone modifications, including hypoacetylation of histone H3 and H4 and trimethylation of H3K27 on the Foxa2 promoter, as well as on the global level. In addition, histone deacetylase 7 (HDAC7) is highly expressed during differentiation and recruited to the Foxa2 promoter. Induction of histone acetylation in VM-derived NPCs by either knockdown of HDAC7 or treatment with the HDAC inhibitor apicidin upregulates Foxa2 expression via hyperacetylation of H3 and a decrease in H3K27 trimethylation on the promoter regions, leading to the expression of DA neuron developmental genes and enhanced differentiation of DA neurons. These effects are antagonized by the expression of shRNAs specific for Foxa2 but enhanced by shRNA for HDAC7. Collectively, these findings indicate that loss of differentiation potential of expanded VM-derived NPCs is attributed to a decrease in Foxa2 expression and suggest that activation of the endogenous Foxa2 gene by epigenetic regulation might be an approach to enhance the generation of DA neurons.


Nature Biomedical Engineering | 2017

Transcriptomic and epigenomic differences in human induced pluripotent stem cells generated from six reprogramming methods

Jared M. Churko; Jaecheol Lee; Mohamed Ameen; Mingxia Gu; Meenakshi Venkatasubramanian; Sebastian Diecke; Karim Sallam; Hogune Im; Gavin Wang; Joseph D. Gold; Nathan Salomonis; Michael Snyder; Joseph C. Wu

Many reprogramming methods can generate human induced pluripotent stem cells (hiPSCs) that closely resemble human embryonic stem cells (hESCs). This has led to assessments of how similar hiPSCs are to hESCs, by evaluating differences in gene expression, epigenetic marks and differentiation potential. However, all previous studies were performed using hiPSCs acquired from different laboratories, passage numbers, culturing conditions, genetic backgrounds and reprogramming methods, all of which may contribute to the reported differences. Here, by using high-throughput sequencing under standardized cell culturing conditions and passage number, we compare the epigenetic signatures (H3K4me3, H3K27me3 and HDAC2 ChIP-seq profiles) and transcriptome differences (by RNA-seq) of hiPSCs generated from the same primary fibroblast population by using six different reprogramming methods. We found that the reprogramming method impacts the resulting transcriptome and that all hiPSC lines could terminally differentiate, regardless of the reprogramming method. Moreover, by comparing the differences between the hiPSC and hESC lines, we observed a significant proportion of differentially expressed genes that could be attributed to polycomb repressive complex targets.Epigenetic and transcriptomic differences in human induced pluripotent stem cells generated from the same fibroblast population reveals that the reprogramming method affects the cells’ gene-expression levels but not their differentiation potential.


Journal of Ginseng Research | 2017

Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth

Ga-Yeon Go; Sang-Jin Lee; Ayoung Jo; Jaecheol Lee; Dong-Wan Seo; Jong-Sun Kang; Si-Kwan Kim; Su-Nam Kim; Yong Kee Kim; Gyu-Un Bae

Background Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. Methods C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. Results Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. Conclusion Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.


Circulation Research | 2017

Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells

Ming-Tao Zhao; Ning-Yi Shao; Shijun Hu; Ning Ma; Rajini Srinivasan; Fereshteh Jahanbani; Jaecheol Lee; Sophia L. Zhang; Michael Snyder; Joseph C. Wu

Rationale: Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type–specific gene expression in the human heart. Objective: We aimed to decipher the cell type–specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. Methods and Results: We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31+CD144+), cardiac progenitor cells (Sca-1+), fibroblasts (DDR2+), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type–specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type–specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Conclusions: Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases.

Collaboration


Dive into the Jaecheol Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge