Jakub Sikora
First Faculty of Medicine, Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jakub Sikora.
American Journal of Human Genetics | 2009
Martina Živná; Helena Hůlková; Marie Matignon; Kateřina Hodaňová; Petr Vyletal; Marie Kalbacova; Veronika Barešová; Jakub Sikora; Hana Blažková; Jan Živný; Robert Ivánek; Viktor Stránecký; Jana Sovová; Kathleen Claes; Evelyne Lerut; Jean Pierre Fryns; P. Suzanne Hart; Thomas C. Hart; Jeremy N. Adams; Audrey Pawtowski; Maud Clemessy; Jean Marie Gasc; Marie Claire Gubler; Corinne Antignac; Milan Elleder; Katja Kapp; Philippe Grimbert; Anthony J. Bleyer; Stanislav Kmoch
Through linkage analysis and candidate gene sequencing, we identified three unrelated families with the autosomal-dominant inheritance of early onset anemia, hypouricosuric hyperuricemia, progressive kidney failure, and mutations resulting either in the deletion (p.Leu16del) or the amino acid exchange (p.Leu16Arg) of a single leucine residue in the signal sequence of renin. Both mutations decrease signal sequence hydrophobicity and are predicted by bioinformatic analyses to damage targeting and cotranslational translocation of preprorenin into the endoplasmic reticulum (ER). Transfection and in vitro studies confirmed that both mutations affect ER translocation and processing of nascent preprorenin, resulting either in reduced (p.Leu16del) or abolished (p.Leu16Arg) prorenin and renin biosynthesis and secretion. Expression of renin and other components of the renin-angiotensin system was decreased accordingly in kidney biopsy specimens from affected individuals. Cells stably expressing the p.Leu16del protein showed activated ER stress, unfolded protein response, and reduced growth rate. It is likely that expression of the mutant proteins has a dominant toxic effect gradually reducing the viability of renin-expressing cells. This alters the intrarenal renin-angiotensin system and the juxtaglomerular apparatus functionality and leads to nephron dropout and progressive kidney failure. Our findings provide insight into the functionality of renin-angiotensin system and stress the importance of renin analysis in families and individuals with early onset hyperuricemia, anemia, and progressive kidney failure.
American Journal of Human Genetics | 2006
Martin Hřebíček; Lenka Mrázová; Volkan Seyrantepe; Stéphanie Durand; Nicole M. Roslin; Lenka Nosková; Hana Hartmannová; Robert Ivanek; Alena Čížková; Helena Poupětová; Jakub Sikora; Jana Uřinovská; Viktor Stránecký; Jiří Zeman; Pierre Lepage; David Roquis; Andrei Verner; Jérôme Ausseil; Clare E. Beesley; Irène Maire; Ben J. H. M. Poorthuis; Jiddeke M. van de Kamp; Otto P. van Diggelen; Ron A. Wevers; Thomas J. Hudson; T. Mary Fujiwara; Jacek Majewski; Kenneth Morgan; Stanislav Kmoch; Alexey V. Pshezhetsky
Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane.
Journal of Inherited Metabolic Disease | 2005
H. Pavlů-Pereira; Befekadu Asfaw; H. Poupčtová; Jana Ledvinová; Jakub Sikora; Marie T. Vanier; K. Sandhoff; Jiří Zeman; Z. Novotná; D. Chudoba; Milan Elleder
SummaryA multi-approach study in a series of 25 Czech and Slovak patients with acid sphingomyelinase deficiency revealed a broad phenotypic variability within Niemann–Pick disease types A and B. The clinical manifestation of only 9 patients fulfilled the historical classification: 5 with the rapidly progressive neurovisceral infantile type A and 4 with a slowly progressive visceral type B. Sixteen patients (64%) represented a hitherto scarcely documented ‘intermediate type’ (IT). Twelve patients showed a protracted neurovisceral course with overt or mild neurological symptoms, three a rapidly progressing fatal visceral affection with rudimentary neurological lesion. One patient died early from a severe visceral disease. The genotype in our patients was represented by 4 frameshift and 14 missense mutations. Six were novel (G166R, R228H, A241V, D251E, D278A, A595fsX601). The Q292K mutation (homoallelic, heteroallelic) was strongly associated with a protracted neurovisceral phenotype (10 of 12 cases). The sphingomyelin loading test in living fibroblasts resulted in total degradation from less than 2% in classical type A to 70–80% in classical type B. In the IT group it ranged from 5% to 49% in a 24 h chase. The liver storage showed three patterns: diffuse, zonal (centrolobular), and discrete submicroscopic. Our series showed a notable variability in both the neurological and visceral lesions as well as in their proportionality and synchrony, and demonstrates a continuum between the historical ‘A’ and ‘B’ phenotypes of ASM deficiency. This points to a broad phenotypic potential of ASM deficiency, suggesting the existence of still unknown factors independently controlling the storage level in the visceral and neuronal compartments. This report highlights the important position of the IT in the ASM deficiency phenotype classification. We define IT as a cluster of variants combining clinical features of both the classical types. The protracted neuronopathic variant with overt, borderline or subclinical neurology prevails and is important in view of future enzyme replacement therapy. It appears more common in central Europe. The visceral, rapidly progressing early fatal type has been recognized rarely so far.
Molecular Genetics and Metabolism | 2010
Kenneth N. Maclean; Jakub Sikora; Viktor Kožich; Hua Jiang; Lori S. Greiner; Eva Kraus; Jakub Krijt; Katherine H. Overdier; Renata Collard; Gary L. Brodsky; Lynne Meltesen; Linda S. Crnic; Robert H. Allen; Sally P. Stabler; Milan Elleder; Rima Rozen; David Patterson; Jan P. Kraus
Cystathionine beta-synthase (CBS) catalyzes the condensation of homocysteine (Hcy) and serine to cystathionine, which is then hydrolyzed to cysteine by cystathionine gamma-lyase. Inactivation of CBS results in CBS-deficient homocystinuria more commonly referred to as classical homocystinuria, which, if untreated, results in mental retardation, thromboembolic complications, and a range of connective tissue disorders. The molecular mechanisms that underlie the pathology of this disease are poorly understood. We report here the generation of a new mouse model of classical homocystinuria in which the mouse cbs gene is inactivated and that exhibits low-level expression of the human CBS transgene under the control of the human CBS promoter. This mouse model, designated “human only” (HO), exhibits severe elevations in both plasma and tissue levels of Hcy, methionine, S-adenosylmethionine, and S-adenosylhomocysteine and a concomitant decrease in plasma and hepatic levels of cysteine. HO mice exhibit mild hepatopathy but, in contrast to previous models of classical homocystinuria, do not incur hepatic steatosis, fibrosis, or neonatal death with approximately 90% of HO mice living for at least 6 months. Tail bleeding determinations indicate that HO mice are in a hypercoagulative state that is significantly ameliorated by betaine treatment in a manner that recapitulates the disease as it occurs in humans. Our findings indicate that this mouse model will be a valuable tool in the study of pathogenesis in classical homocystinuria and the rational design of novel treatments.
Molecular Genetics and Metabolism | 2010
Kenneth N. Maclean; Jakub Sikora; Viktor Kožich; Hua Jiang; Lori S. Greiner; Eva Kraus; Jakub Krijt; Linda S. Crnic; Robert H. Allen; Sally P. Stabler; Milan Elleder; Jan P. Kraus
Cystathionine beta-synthase (CBS) deficient homocystinuria is an inherited metabolic defect that if untreated typically results in mental retardation, thromboembolism and a range of connective tissue disturbances. A knockout mouse model has previously been used to investigate pathogenic mechanisms in classical homocystinuria (Watanabe et al., PNAS 92 (1995) 1585–1589). This mouse model exhibits a semi-lethal phenotype and the majority of mice do not survive the early neonatal period. We report here that the birth incidence of cbs (−/−) mice produced from heterozygous crosses is non-Mendelian and not significantly improved by treatment with either the Hcy lowering compound betaine or the cysteine donor N-acetylcysteine. Betaine treatment did improve survival of cbs (−/−) mice and restored fertility to female cbs (−/−) mice but did so without significantly lowering Hcy levels. Surviving cbs (−/−) mice failed to show any alteration in coagulation parameters compared to wild-type controls. Moribund cbs (−/−) mice exhibited severe liver injury and hepatic fibrosis while surviving cbs (−/−) mice although less severely affected, still exhibited a level of severe liver injury that is not found in the human disease. The hepatopathy observed in this model may offer an explanation for the failure of cbs (−/−) mice to respond to betaine or exhibit a hypercoagulative phenotype. We conclude that although this model provides useful data on the biochemical sequelae of classical homocystinuria, it does not successfully recapitulate a number of important features of the human disease and its use for studying mechanisms in homocystinuria should be treated with caution as the hepatopathy produces changes which could influence the results.
The Journal of Neuroscience | 2013
Matthew C. Micsenyi; Jakub Sikora; Gloria Stephney; Kostantin Dobrenis; Steven U. Walkley
Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2−/− mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin–proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2−/− neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation.
Annals of clinical and translational neurology | 2016
Cristin Davidson; Yonatan I. Fishman; István Puskás; Julianna Szemán; Tamás Sohajda; Leslie A. McCauliff; Jakub Sikora; Judith Storch; Marie T. Vanier; Lajos Szente; Steven U. Walkley; Kostantin Dobrenis
Niemann–Pick type C (NPC) disease is a fatal, neurodegenerative, lysosomal storage disorder characterized by intracellular accumulation of unesterified cholesterol (UC) and other lipids. While its mechanism of action remains unresolved, administration of 2‐hydroxypropyl‐β‐cyclodextrin (HPβCD) has provided the greatest disease amelioration in animal models but is ototoxic. We evaluated other cyclodextrins (CDs) for treatment outcome and chemical interaction with disease‐relevant substrates that could pertain to mechanism.
Virchows Archiv | 2008
Jana Keslová-Veselíková; Helena Hůlková; Robert Dobrovolný; Befekadu Asfaw; Helena Poupětová; Linda Berná; Jakub Sikora; Lubor Goláň; Jana Ledvinová; Milan Elleder
The function and intracellular delivery of enzyme therapeutics for Fabry disease were studied in cultured fibroblasts and in the biopsied tissues of two male patients to show diversity of affected cells in response to treatment. In the mutant fibroblasts cultures, the final cellular level of endocytosed recombinant α-galactosidases A (agalsidases, FabrazymeTM, and ReplagalTM) exceeded, by several fold, the amount in control fibroblasts and led to efficient direct intra-lysosomal hydrolysis of (3H)Gb3Cer. In contrast, in the samples from the heart and some other tissues biopsied after several months of enzyme replacement therapy (ERT) with FabrazymeTM, only the endothelial cells were free of storage. Persistent Gb3Cer storage was found in cardiocytes (accompanied by increase of lipopigment), smooth muscle cells, fibroblasts, sweat glands, and skeletal muscle. Immunohistochemistry of cardiocytes demonstrated, for the first time, the presence of a considerable amount of the active enzyme in intimate contact with the storage compartment. Factors responsible for the limited ERT effectiveness are discussed, namely post-mitotic status of storage cells preventing their replacement by enzyme supplied precursors, modification of the lysosomal system by longstanding storage, and possible relative lack of Sap B. These observations support the strategy of early treatment for prevention of lysosomal storage.
Annals of Human Genetics | 2003
Jakub Sikora; H. Pavlu-Pereira; M. Elleder; H. Roelofs; R. A. Wevers
We have analyzed acid sphingomyelinase (SMPD1; E.C. 3.1.4.12) gene mutations in four Niemann‐Pick disease (NPD) type A and B patients of Turkish ancestry and in three patients of Dutch origin.
The Journal of Neuroscience | 2015
Maria Praggastis; Brett Tortelli; Jessie Zhang; Hideji Fujiwara; Rohini Sidhu; Anita Chacko; Zhouji Chen; Chan Chung; Andrew P. Lieberman; Jakub Sikora; Cristin Davidson; Steven U. Walkley; Nina H. Pipalia; Frederick R. Maxfield; Jean E. Schaffer; Daniel S. Ory
Niemann-Pick Type C1 (NPC1) disease is a rare neurovisceral, cholesterol–sphingolipid lysosomal storage disorder characterized by ataxia, motor impairment, progressive intellectual decline, and dementia. The most prevalent mutation, NPC1I1061T, encodes a misfolded protein with a reduced half-life caused by ER-associated degradation. Therapies directed at stabilization of the mutant NPC1 protein reduce cholesterol storage in fibroblasts but have not been tested in vivo because of lack of a suitable animal model. Whereas the prominent features of human NPC1 disease are replicated in the null Npc1−/− mouse, this model is not amenable to examining proteostatic therapies. The objective of the present study was to develop an NPC1 I1061T knock-in mouse in which to test proteostatic therapies. Compared with the Npc1−/− mouse, this Npc1tm(I1061T)Dso model displays a less severe, delayed form of NPC1 disease with respect to weight loss, decreased motor coordination, Purkinje cell death, lipid storage, and premature death. The murine NPC1I1061T protein has a reduced half-life in vivo, consistent with protein misfolding and rapid ER-associated degradation, and can be stabilized by histone deacetylase inhibition. This novel mouse model faithfully recapitulates human NPC1 disease and provides a powerful tool for preclinical evaluation of therapies targeting NPC1 protein variants with compromised stability.