James F. Booth
City University of New York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James F. Booth.
Journal of Climate | 2014
Catherine M. Naud; James F. Booth; Anthony D. Del Genio
AbstractThe Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat–Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive obs...
Monthly Weather Review | 2012
James F. Booth; LuAnne Thompson; Jérôme Patoux; Kathryn A. Kelly
AbstractThe Gulf Stream region is a primary location for midlatitude storm cyclogenesis and growth. However, the influence of sea surface temperature (SST) on storms in the region is still under question, particularly after a storm has developed. Using the Weather Research and Forecasting (WRF) model, a storm that intensified as it transited northward across the Gulf Stream is simulated multiple times using different SST boundary conditions. These experiments test the storm response to changes in both the absolute value of the SST and the meridional SST gradient. Across the different simulations, the storm strength increases monotonically with the magnitude of the SST perturbations, even when the perturbations weaken the SST gradient. The storm response to the SST perturbations is driven by the latent heat release in the storm warm conveyor belt (WCB). During the late stages of development, the surface fluxes under the storm warm sector regulate the supply of heat and moisture to the WCB. This allows the ...
Climate Dynamics | 2013
James F. Booth; Shuguang Wang; Lorenzo M. Polvani
The response of midlatitude storms to global warming remains uncertain. This is due, in part, to the competing effects of a weaker meridional surface temperature gradient and a higher low-level moisture content, both of which are projected to occur as a consequence of increasing greenhouse gases. Here we address the latter of these two effects, and try to elucidate the effect of increased moisture on the development and evolution of midlatitude storms. We do this with a set of highly controlled, baroclinic lifecycle experiments, in which atmospheric moisture is progressively increased. To assess the robustness of the results, the moisture content is changed in two different ways: first by using different initial relative humidity, and second by varying a parameter that we insert into the Clausius-Clapeyron equation. The latter method allows us to artificially increase the moisture content above current levels while keeping the relative humidity constant. Irrespective of how moisture is altered, we find that nearly all important measures of storm strength increase as the moisture content rises. Specifically, we examine the storm’s central pressure minimum, the strongest surface winds, and both extreme and accumulated precipitation rates. For all these metrics, increased moisture yields a stronger storm. Interestingly, we also find that when moisture is increased beyond current levels, the resulting storm has a reduced horizontal scale while its vertical extent increases. Finally, we note that for moisture increases comparable to those projected to occur by the end of the twentyfirst century, the actual amplitude of the increases in storm strength is relatively modest, irrespective of the specific measure one uses.
Journal of Climate | 2010
James F. Booth; LuAnne Thompson; Jérôme Patoux; Kathryn A. Kelly; Suzanne Dickinson
Abstract Storm-track analysis is applied to the meridional winds at 10 m and 850 hPa for the winters of 1999–2006. The analysis is focused on the North Atlantic and North Pacific Ocean basins and the Southern Ocean spanning the region south of the Indian Ocean. The spatial patterns that emerge from the analysis of the 850-hPa winds are the typical free-tropospheric storm tracks. The spatial patterns that emerge from the analysis of the surface winds differ from the free-tropospheric storm tracks. The spatial differences between the surface and free-tropospheric storm tracks can be explained by the influence of the spatial variability in the instability of the atmospheric boundary layer. Strongly unstable boundary layers allow greater downward mixing of free-tropospheric momentum (momentum mixing), and this may be the cause of the stronger surface storm tracks in regions with greater instability in the time mean. Principal component analysis suggests that the basin-scale variability that is reflected in th...
Nature Communications | 2016
Marco Tedesco; Thomas L. Mote; Xavier Fettweis; Edward Hanna; Jeyavinoth Jeyaratnam; James F. Booth; Rajashree Tri Datta; Kate Briggs
Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700±50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948–2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade.
Journal of Climate | 2013
James F. Booth; Catherine M. Naud; Anthony D. Del Genio
AbstractThis study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the models ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset m...
Journal of Applied Meteorology and Climatology | 2015
James F. Booth; Harald E. Rieder; Dong Eun Lee; Yochanan Kushnir
AbstractThis study analyzes the association between wintertime high-wind events (HWEs) in the northeastern United States and extratropical cyclones. Sustained wind maxima in the daily summary data from the National Climatic Data Center’s integrated surface database are analyzed for 1979–2012. For each station, a generalized Pareto distribution is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at 1, 3, and 5 yr are derived. Wind events meeting the return-level criteria are termed HWEs. The HWEs occurring on the same day are grouped into simultaneous wind exceedance dates, termed multistation events. In a separate analysis, extratropical cyclones are tracked using ERA-Interim. The multistation events are associated with the extratropical cyclone tracks on the basis of cyclone proximity on the day of the event. The multistation wind events are found to be most often associated with cyclones traveling from southwest to northeast, originating west of the Appalachian...
Journal of Climate | 2016
Catherine M. Naud; James F. Booth; Anthony D. Del Genio
Using NASA-Aqua MODIS and AIRS data, the relationship between low-level cloud cover (cloud top below the 700 hPa level) and boundary layer stability is explored in post-cold frontal conditions. A linear relationship is found between seasonal cloud cover and two separate measures of inversion strength, the lower tropospheric stability (LTS) and the estimated inversion strength (EIS), for two specific regions in the north Atlantic and Pacific in quiescent and weakly subsiding conditions. The relationship barely changes when considering dynamically active and subsiding post-cold frontal conditions for the same regions. To explore the generality of this result and increase sample size, cold front centered composites of cloud cover and stability are constructed. The northern and southern hemisphere seasonal cloud cover and stability distributions in the post-cold frontal regions are then compared. A fairly good correlation between cloud cover and EIS is found in both hemispheres across all seasons, suggesting that a linear relationship between cloud cover and inversion strength proposed for quiescent conditions exists also in more dynamically active subsiding post-cold frontal conditions. However, for a given season and hemisphere, the correlation between cloud cover and EIS degrades in post-cold frontal regions, especially in the northern hemisphere. At these scales, other large scale factors tend to correlate better with cloud cover.
Journal of Hydrometeorology | 2017
Ali Hamidi; Naresh Devineni; James F. Booth; Amana Hosten; Ralph Ferraro; Reza Khanbilvardi
AbstractExtreme rainfall events, specifically in urban areas, have dramatic impacts on society and can lead to loss of life and property. Despite these hazards, little is known about the city-scale variability of heavy rainfall events. In the current study, gridded stage IV radar data from 2002 to 2015 are employed to investigate the clustering and the spatial variability of simultaneous rainfall exceedances in the greater New York area. Multivariate clustering based on partitioning around medoids is applied to the extreme rainfall events’ average intensity and areal extent for the 1- and 24-h accumulated rainfall during winter (December–February) and summer (June–August) seasons. The atmospheric teleconnections of the daily extreme event for winter and summer are investigated using compositing of ERA-Interim. For both 1- and 24-h durations, the winter season extreme rainfall events have larger areal extent than the summer season extreme rainfall events. Winter extreme events are associated with deep and ...
Journal of Climate | 2017
James F. Booth; Young-Oh Kwon; Stanley Ko; R. Justin Small; Rym Msadek
AbstractTo improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surf...