Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James H. Mather is active.

Publication


Featured researches published by James H. Mather.


Bulletin of the American Meteorological Society | 2007

The Mixed-Phase Arctic Cloud Experiment

Johannes Verlinde; Jerry Y. Harrington; Greg M. McFarquhar; V. T. Yannuzzi; Alexander Avramov; S. Greenberg; Nathaniel C. Johnson; Gong Zhang; Michael R. Poellot; James H. Mather; David D. Turner; Edwin W. Eloranta; B. D. Zak; Anthony J. Prenni; John S. Daniel; Gregory L. Kok; D. C. Tobin; Robert E. Holz; Kenneth Sassen; Douglas A. Spangenberg; Patrick Minnis; Tim Tooman; M. D. Ivey; Scott J. Richardson; C. P. Bahrmann; Matthew D. Shupe; Paul J. DeMott; Andrew J. Heymsfield; Robyn Schofield

The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted from 27 September through 22 October 2004 over the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The primary objectives were to collect a dataset suitable to study interactions between microphysics, dynamics, and radiative transfer in mixed-phase Arctic clouds, and to develop/evaluate cloud property retrievals from surface-and satellite-based remote sensing instruments. Observations taken during the 1977/98 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds by utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the ACRF site on the North Slope of Alaska. The measureme...


Journal of Quantitative Spectroscopy & Radiative Transfer | 1999

The k-distribution method and correlated-k approximation for a shortwave radiative transfer model

Seiji Kato; Thomas P. Ackerman; James H. Mather; Eugene E. Clothiaux

Absorption cross sections are tabulated for water vapor, including continuum absorption, ozone, oxygen and carbon dioxide in the solar spectral region by adopting the k-distribution method. These tables are generated based on line-by-line code results for ranges of total pressure, temperature and water vapor concentration typical of values throughout the troposphere. These tables are incorporated into a shortwave radiative transfer code, which has 32 wavelength intervals across the solar spectrum, by using the correlated-k approximation in order to evaluate the accuracy in the broad band direct normal irradiance computation. A comparison of the direct normal irradiance with MODTRAN3 demonstrates that these tables can be used for shortwave broad band irradiance computations; the difference in the transmissivity is within 0.01 throughout most of the solar spectral region.


Journal of Geophysical Research | 1997

Uncertainties in modeled and measured clear-sky surface shortwave irradiances

Seiji Kato; Thomas P. Ackerman; Eugene E. Clothiaux; James H. Mather; Gerald G. Mace; M. L. Wesely; F. H. Murcray; Joseph Michalsky

A comparison of five independent measurements of the clear-sky downward shortwave irradiance at the surface shows that they scatter within a 5% range depending on their calibration constants. When the measurements are corrected using data from two cavity radiometers, three of the five independent measurements agree within 3 W m−2 over three clear-sky days, which is well within the estimated error limit of ±1.5%. A comparison of these three sets of irradiance measurements with the computed irradiance by a δ2-stream model reveals that the model overestimates the irradiance by 5%. Detailed investigation of the approximations and uncertainties associated with the computations (including the measurement error in the water vapor and ozone amounts, neglecting the state of polarization and trace gas absorption, the 2-stream approximation, the neglect of the spectral dependence of the surface albedo, and the uncertainties associated with aerosols) demonstrates that the discrepancy is not due to these approximations. Further analysis of the modeled and measured irradiance shows that the discrepancy is almost entirely due to the difference between modeled and measured diffuse field irradiances. An analysis of narrow-band diffuse to total irradiance ratios shows that this discrepancy is the largest near 400 nm and decreases with wavelength. These results rely on the absolute calibrations of two cavity radiometers, two shaded pyranometers, and one unshaded pyranometer, as well as ratios of irradiances measured by a multifilter rotating shadow-band radiometer. Therefore, in order for instrumental error to account for the diffuse field discrepancy, three independent measurements of the diffuse field irradiance must be biased low by at least 40%. For an aerosol to account for this discrepancy, it must be highly absorbing with a single-scattering albedo as low as 0.3. The unlikelihood of instrumental errors of 40% and aerosol single-scattering albedos of 0.3 suggests a third possibility: the neglect of some gaseous absorption process at visible wavelengths.


Bulletin of the American Meteorological Society | 2013

The Arm Climate Research Facility: A Review of Structure and Capabilities

James H. Mather; Jimmy W. Voyles

The Atmospheric Radiation Measurement (ARM) Climate Research Facility (www.arm.gov) provides atmospheric observations from diverse climatic regimes around the world. Because it is a U.S. Department of Energy (DOE) user facility, ARM data are freely available to anyone through the ARM Data Archive. With 20 years of operations, the facility recently added two mobile facilities and an aerial facility to its network of fixed-location sites. Research using ARM data has led to advances in areas ranging from radiative transfer to cloud microphysics. The American Recovery and Reinvestment Act of 2009 allowed ARM to enhance its observational capabilities with a broad array of new instruments at its fixed and mobile sites and the aerial facility. Instruments include scanning radars; water vapor, cloud/aerosol extinction, and Doppler lidars; aerosol instruments for measuring optical, physical, and chemical properties; and aircraft probes for measuring cloud and aerosol properties. Taking full advantage of these inst...


Bulletin of the American Meteorological Society | 2008

The Tropical Warm Pool International Cloud Experiment

Peter T. May; James H. Mather; G. Vaughan; Christian Jakob; Greg M. McFarquhar; Keith Bower; Gerald G. Mace

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWPICE) and Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign in the area around Darwin, Northern Australia, in January and February 2006. The aim of the experiment was to observe the evolution of tropical cloud systems and their interaction with the environment within an observational framework optimized for a range of modeling activities with the goal of improving the representation of cloud and aerosol process in a range of models. The experiment design utilized permanent observational facilities in Darwin, including a polarimetric weather radar and a suite of cloud remote-sensing instruments. This was augmented by a dense network of soundings, together with radiation, flux, lightning, and remote-sensing measurements, as well as oceanographic observations. A fleet of five research aircraft, including ...


Journal of Geophysical Research | 2009

Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006

Yi Wang; Charles N. Long; Lai-Yung R. Leung; Jimy Dudhia; Sally A. McFarlane; James H. Mather; Steven J. Ghan; Xiaodong Liu

Data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) were used to evaluate Weather Research and Forecasting (WRF) model simulations with foci on the performance of three six-class bulk microphysical parameterizations (BMPs). Before the comparison with data from TWP-ICE, a suite of WRF simulations were carried out under an idealized condition, in which the other physical parameterizations were turned off. The idealized simulations were intended to examine the interaction of BMP at a cloud-resolving scale (250 m) with the nonhydrostatic dynamic core of the WRF model. The other suite of nested WRF simulations was targeted on the objective analysis of TWP-ICE at a cloud-permitting scale (quasi-convective resolving, 4 km). Wide ranges of discrepancies exist among the three BMPs when compared with ground-based and satellite remote sensing retrievals for TWP-ICE. Although many processes and associated parameters may influence clouds, it is strongly believed that atmospheric processes fundamentally govern the cloud feedbacks through the interactions between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. Based on the idealized experiments, we suggest that the discrepancy is a result of the different treatment of ice-phase microphysical processes (e.g., cloud ice, snow, and graupel). Because of the turn-off of the radiation and other physical parameterizations, the cloud radiation feedback is not studied in idealized experiments. On the other hand, the cloud-permitting experiments engage all physical parameterizations in the WRF model so that the radiative heating processes are considered together with other physical processes. Common features between these two experiment suites indicate that the major discrepancies among the three BMPs are similar. This strongly suggests the importance of ice-phase microphysics. To isolate the influence of cloud radiation feedback, we further carried out an additional suite of simulations, which turns off the interactions between cloud and radiation schemes. It is found that the cloud radiation feedback plays a secondary, but nonnegligible role in contributing to the wide range of discrepancies among the three BMPs.


Journal of Geophysical Research | 1994

Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure

Philip S. Stevens; James H. Mather; William H. Brune

The hydroxyl radical (OH) is the primary oxidant in the atmosphere, responsible for many photochemical reactions that affect both regional air quality and global climate change. Because of its high reactivity, abundances of OH in the troposphere are less than 1 part per trillion by volume (pptv) and thus difficult to measure accurately. This paper describes an instrument for the sensitive detection of OH in the troposphere using low-pressure laser-induced fluorescence. Ambient air is expanded into a low pressure detection chamber, and OH is both excited and detected using the A(sup 2) Epsilon(+)(v prime = 0) yields X(sup 2)Pi(v double prime = 0) transition near 308 nm. An injector upstream of the detection axis allows for the addition of reagent NO to convert ambient HO2 to OH using the fast reaction HO2 + NO yields OH + NO2. Using recent advances in laser and detector technologies, this prototype instrument is able to detect less than 1 x 10(exp 5) molecules/cu cm (0.004 pptv) of OH with an integration time of 30 s with negligible interferences.


Journal of Atmospheric and Oceanic Technology | 1999

The Atmospheric Radiation Measurement Program Cloud Radars: Operational Modes

Eugene E. Clothiaux; Kenneth P. Moran; Brooks E. Martner; Thomas P. Ackerman; Gerald G. Mace; Taneil Uttal; James H. Mather; Kevin B. Widener; Mark A. Miller; Daniel J. Rodriguez

Abstract During the past decade, the U.S. Department of Energy (DOE), through the Atmospheric Radiation Measurement (ARM) Program, has supported the development of several millimeter-wavelength radars for the study of clouds. This effort has culminated in the development and construction of a 35-GHz radar system by the Environmental Technology Laboratory (ETL) of the National Oceanic and Atmospheric Administration (NOAA). Radar systems based on the NOAA ETL design are now operating at the DOE ARM Southern Great Plains central facility in central Oklahoma and the DOE ARM North Slope of Alaska site near Barrow, Alaska. Operational systems are expected to come online within the next year at the DOE ARM tropical western Pacific sites located at Manus, Papua New Guinea, and Nauru. In order for these radars to detect the full range of atmospheric hydrometeors, specific modes of operation must be implemented on them that are tuned to accurately detect the reflectivities of specific types of hydrometeors. The set...


Journal of Geophysical Research | 1997

HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: Measurement and theory

P. S. Stevens; James H. Mather; William H. Brune; F. L. Eisele; David J. Tanner; A. Jefferson; C. A. Cantrell; Richard E. Shetter; S. Sewall; Alan Fried; Bruce Henry; E. J. Williams; Karsten Baumann; Paul D. Goldan; William C. Kuster

Ambient concentrations of the hydroxyl (OH), hydroperoxyl (HO2), and total peroxy (ΣRO2) radicals were measured as part of the Tropospheric OH Photochemistry Experiment at Idaho Hill, Colorado, during August and September of 1993. OH radicals were measured using ion-assisted mass spectroscopy and low-pressure laser-induced fluorescence (LIF) detection techniques. HO2 was measured using chemical conversion and LIF detection of OH. ΣRO2 radicals were measured using a chemical amplifier technique. The simultaneous measurements of these key species provide an opportunity to test our present understanding of the fast photochemistry of the troposphere. Measured HO2/OH ratios were typically between 15 and 80, and agreed well with predictions under conditions where NO mixing ratios were greater than 100 pptv. However, under clean conditions the measured ratio was a factor of 3–4 lower than predicted. The RO2/HO2 ratio was typically a factor of 4–15 larger than predicted by present theories of tropospheric chemistry. A steady state model was used in an attempt to analyze the discrepancies between the measured HO2/OH and RO2/HO2 ratios with present theories of hydrocarbon oxidation in the troposphere.


Journal of Geophysical Research | 1997

Peroxy radicals from photostationary state deviations and steady state calculations during the Tropospheric OH Photochemistry Experiment at Idaho Hill, Colorado, 1993

C. A. Cantrell; Richard E. Shetter; Jack G. Calvert; F. L. Eisele; Eric J. Williams; Karsten Baumann; William H. Brune; Phillip S. Stevens; James H. Mather

Concentrations of peroxy radicals and a number of other trace gases were measured during the Tropospheric OH Photochemistry Experiment in August and September, 1993. The trace gas concentrations were used to derive two estimates of peroxy radical levels: deviations from the photostationary state, and theoretical calculations with the assumption of steady state radical concentrations. As in many previous studies, the photostationary state method yielded midday peroxy radical levels about twice those measured. Calculations were performed to assess the expected uncertainty in the photostationary state derived peroxy radical concentrations from the uncertainty of the input parameters. The agreement between measurements and steady state determinations was better than the photostationary state estimates, with the measurements slightly higher on average. Radical formation and destruction rates for clear sky conditions with low and high NOx were derived from the steady state calculations and the results demonstrate the processes that control peroxy radical levels in clean and polluted continental atmospheres.

Collaboration


Dive into the James H. Mather's collaboration.

Top Co-Authors

Avatar

Sally A. McFarlane

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles N. Long

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

David D. Turner

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

William H. Brune

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Eugene E. Clothiaux

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Raymond A. McCord

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip S. Stevens

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge