Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Healy is active.

Publication


Featured researches published by James Healy.


Classical and Quantum Gravity | 2015

Testing general relativity with present and future astrophysical observations

Emanuele Berti; Enrico Barausse; Vitor Cardoso; Leonardo Gualtieri; Paolo Pani; Ulrich Sperhake; Leo C. Stein; Norbert Wex; Kent Yagi; Tessa Baker; C. P. Burgess; Flávio S. Coelho; Daniela D. Doneva; Antonio De Felice; Pedro G. Ferreira; P. C. C. Freire; James Healy; Carlos Herdeiro; Michael Horbatsch; Burkhard Kleihaus; Antoine Klein; Kostas D. Kokkotas; Jutta Kunz; Pablo Laguna; Ryan N. Lang; Tjonnie G. F. Li; T. B. Littenberg; Andrew Matas; Saeed Mirshekari; Hirotada Okawa

One century after its formulation, Einsteins general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einsteins theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.


Classical and Quantum Gravity | 2013

Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

Ian Hinder; A. Buonanno; Michael Boyle; Zachariah B. Etienne; James Healy; Nathan K. Johnson-McDaniel; Alessandro Nagar; Hiroyuki Nakano; Y. Pan; Harald P. Pfeiffer; Michael Pürrer; Christian Reisswig; Mark A. Scheel; Ulrich Sperhake; Bela Szilagyi; Wolfgang Tichy; Barry Wardell; Anıl Zenginoğlu; Daniela Alic; Sebastiano Bernuzzi; Tanja Bode; Bernd Brügmann; Luisa T. Buchman; Manuela Campanelli; Tony Chu; Thibault Damour; Jason D Grigsby; Mark Hannam; Roland Haas; Daniel A. Hemberger

The Numerical–Relativity–Analytical–Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binarys total mass is ~100–200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ≤4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.


Classical and Quantum Gravity | 2012

The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries

P. Ajith; Michael Boyle; D. A. Brown; Bernd Brügmann; Luisa T. Buchman; L. Cadonati; Manuela Campanelli; Tony Chu; Zachariah B. Etienne; S. Fairhurst; Mark Hannam; James Healy; Ian Hinder; S. Husa; Lawrence E. Kidder; Badri Krishnan; Pablo Laguna; Yuk Tung Liu; L. T. London; Carlos O. Lousto; Geoffrey Lovelace; Ilana MacDonald; Pedro Marronetti; S. R. P. Mohapatra; Philipp Mösta; Doreen Müller; Bruno C. Mundim; Hiroyuki Nakano; F. Ohme; Vasileios Paschalidis

The numerical injection analysis (NINJA) project is a collaborative effort between members of the numerical-relativity and gravitational wave data-analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms and to foster closer collaboration between the numerical-relativity and data-analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian—numerical-relativity hybrid waveforms, large numbers of injections and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical-relativity groups have contributed 56 hybrid waveforms consisting of a numerical portion modeling the late inspiral, merger and ringdown stitched to a post-Newtonian portion modeling the early inspiral. We summarize the techniques used by each group in constructing their submissions. We also report on the procedures used to validate these submissions, including examination in the time and frequency domains and comparisons of waveforms from different groups against each other. These procedures have so far considered only the (l, m) = (2, 2) mode. Based on these studies, we judge that the hybrid waveforms are suitable for NINJA-2 studies. We note some of the plans for these investigations.


Physical Review Letters | 2009

Superkicks in hyperbolic encounters of binary black holes.

James Healy; Frank Herrmann; Ian Hinder; Deirdre Shoemaker; Pablo Laguna; Richard A. Matzner

Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasicircular inspirals, for which kicks as large as approximately 3300 km s;(-1) have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasicircular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible in highly relativistic scatterings to achieve kick velocities as large as 10 000 km s;(-1).


The Astrophysical Journal | 2012

MERGERS OF SUPERMASSIVE BLACK HOLES IN ASTROPHYSICAL ENVIRONMENTS

Tanja Bode; Tamara Bogdanovic; Roland Haas; James Healy; Pablo Laguna; Deirdre Shoemaker

Modeling the late inspiral and merger of supermassive black holes is central to understanding accretion processes and the conditions under which electromagnetic emission accompanies gravitational waves. We use fully general relativistic, hydrodynamics simulations to investigate how electromagnetic signatures correlate with black hole spins, mass ratios, and the gaseous environment in this final phase of binary evolution. In all scenarios, we find some form of characteristic electromagnetic variability whose pattern depends on the spins and binary mass ratios. Binaries in hot accretion flows exhibit a flare followed by a sudden drop in luminosity associated with the plunge and merger, as well as quasi-periodic oscillations correlated with the gravitational waves during the inspiral. Conversely, circumbinary disk systems are characterized by a low luminosity of variable emission, suggesting challenging prospects for their detection.


Physical Review D | 2014

Remnant mass, spin, and recoil from spin aligned black-hole binaries

James Healy; Carlos O. Lousto; Yosef Zlochower

We perform a set of 36 nonprecessing black-hole binary simulations with spins either aligned or counteraligned with the orbital angular momentum in order to model the final mass, spin, and recoil of the merged black hole as a function of the individual black-hole spin magnitudes and the mass ratio of the progenitors. We find that the maximum recoil for these configurations is


Classical and Quantum Gravity | 2012

Late inspiral and merger of binary black holes in scalar–tensor theories of gravity

James Healy; Tanja Bode; Roland Haas; Enrique Pazos; Pablo Laguna; Deirdre Shoemaker; Nicolas Yunes

{V}_{\mathrm{max}}=526\ifmmode\pm\else\textpm\fi{}23\text{ }\text{ }\mathrm{km}\text{ }{\mathrm{s}}^{\ensuremath{-}1}


Physical Review Letters | 2009

Zoom-whirl orbits in black hole binaries.

James Healy; Janna Levin; Deirdre Shoemaker

, which occurs when the progenitor spins are maximal, the mass ratio is


Physical Review D | 2013

Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame

L. Pekowsky; R. O’Shaughnessy; James Healy; Deirdre Shoemaker

{q}_{\mathrm{max}}={m}_{1}/{m}_{2}=0.623\ifmmode\pm\else\textpm\fi{}0.038


Physical Review D | 2014

Modeling ringdown: Beyond the fundamental quasinormal modes

L. T. London; Deirdre Shoemaker; James Healy

, the smaller black-hole spin is aligned with the orbital angular momentum, and the larger black-hole spin is counteraligned (

Collaboration


Dive into the James Healy's collaboration.

Top Co-Authors

Avatar

Carlos O. Lousto

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Deirdre Shoemaker

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pablo Laguna

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yosef Zlochower

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. O'Shaughnessy

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Manuela Campanelli

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

L. Cadonati

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Mark A. Scheel

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge