Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Crawford is active.

Publication


Featured researches published by James J. Crawford.


Journal of Medicinal Chemistry | 2015

Inhibitors of p21-Activated Kinases (PAKs)

Joachim Rudolph; James J. Crawford; Klaus P. Hoeflich; Weiru Wang

The p21-activated kinase (PAK) family of serine/threonine protein kinases plays important roles in cytoskeletal organization, cellular morphogenesis, and survival, and members of this family have been implicated in many diseases including cancer, infectious diseases, and neurological disorders. Owing to their large and flexible ATP binding cleft, PAKs, particularly group I PAKs (PAK1, -2, and -3), are difficult to drug; hence, few PAK inhibitors with satisfactory kinase selectivity and druglike properties have been reported to date. Examples are a recently discovered group II PAK (PAK4, -5, -6) selective inhibitor series based on a benzimidazole core, a group I PAK selective series based on a pyrido[2,3-d]pyrimidine-7-one core, and an allosteric dibenzodiazepine PAK1 inhibitor series. Only one compound, an aminopyrazole based pan-PAK inhibitor, entered clinical trials but did not progress beyond phase I trials. Clinical proof of concept for pan-group I, pan-group II, or PAK isoform selective inhibition has yet to be demonstrated.


Journal of Medicinal Chemistry | 2012

(1R,2R)-N-(1-cyanocyclopropyl)-2-(6-methoxy-1,3,4,5-tetrahydropyrido[4,3-b]indole-2-carbonyl)cyclohexanecarboxamide (AZD4996): a potent and highly selective cathepsin K inhibitor for the treatment of osteoarthritis.

Alexander G. Dossetter; Howard Beeley; Jonathan Bowyer; Calum R. Cook; James J. Crawford; Jonathan E. Finlayson; Nicola Murdoch Heron; Christine Heyes; Adrian J. Highton; Julian A. Hudson; Anja Jestel; Peter W. Kenny; Stephan Krapp; Scott Martin; Philip A. MacFaul; Thomas M. McGuire; Pablo Morentin Gutierrez; Andrew D. Morley; Jeffrey James Morris; Ken Page; Lyn Rosenbrier Ribeiro; Helen Sawney; Stefan Steinbacher; Caroline L. Smith; Madeleine Vickers

Directed screening of nitrile compounds revealed 3 as a highly potent cathepsin K inhibitor but with cathepsin S activity and very poor stability to microsomes. Synthesis of compounds with reduced molecular complexity, such as 7, revealed key SAR and demonstrated that baseline physical properties and in vitro stability were in fact excellent for this series. The tricycle carboline P3 unit was discovered by hypothesis-based design using existing structural information. Optimization using small substituents, knowledge from matched molecular pairs, and control of lipophilicity yielded compounds very close to the desired profile, of which 34 (AZD4996) was selected on the basis of pharmacokinetic profile.


Expert Opinion on Therapeutic Patents | 2012

p21-Activated kinase inhibitors: a patent review

James J. Crawford; Klaus P. Hoeflich; Joachim Rudolph

Introduction: The p21-activated kinase (PAK) family of serine/threonine protein kinases is activated by binding to the small (p21) GTP-binding proteins Cdc42 and Rac. The PAK family plays important roles in cytoskeletal organisation, cellular morphogenesis and survival, and members of this family have been implicated in a wide range of diseases including cancer, infectious diseases, neurological disorders and arthritis. Areas covered: The present review seeks to summarise recent (up to 2011) reports of small-molecule inhibitors of p21-activated kinases. Where patent applications describe activity against a broad range of kinases and no information was provided specifically on PAK inhibition, these are excluded from this review. In patents considered to be relevant, exemplary compounds were selected and highlighted based on their representation of the chemical matter claimed, potencies, structural features and subsequent disclosure of their properties. Selected information from non-patent literature was also included. Expert opinion: A considerable amount of research has been devoted over the past 15 years to exploring the role of PAKs in a wide range of diseases, with a focus on oncology. Published PAK inhibitors are still comparatively rare and few exhibit satisfactory kinase selectivity and ‘drug-like properties. A key question is which profile, pan-PAK, group selective or isoform selective, holds the most promise from both therapeutic and safety standpoints. To investigate this question, isoform-selective, as well as kinome-selective, PAK inhibitor tool compounds will be needed. Pfizer was the first company to progress a PAK inhibitor (pan-PAK) to clinical development; it is expected that, despite the difficulties, other PAK inhibitors will soon follow.


Bioorganic & Medicinal Chemistry Letters | 2015

Potent and selective Bruton's tyrosine kinase inhibitors: Discovery of GDC-0834.

Wendy B. Young; James Barbosa; Peter Blomgren; Meire Bremer; James J. Crawford; Donna Dambach; Steve Gallion; Sarah G. Hymowitz; Jeffrey E. Kropf; Seung Ho Lee; Lichuan Liu; Joseph W. Lubach; Jen Macaluso; Pat Maciejewski; Brigitte Maurer; Scott Mitchell; Daniel F. Ortwine; Julie Di Paolo; Karin Reif; Heleen Scheerens; Aaron C. Schmitt; C. Gregory Sowell; Xiaojing Wang; Harvey Wong; Jin-Ming Xiong; Jianjun Xu; Zhongdong Zhao; Kevin S. Currie

SAR studies focused on improving the pharmacokinetic (PK) properties of the previously reported potent and selective Btk inhibitor CGI-1746 (1) resulted in the clinical candidate GDC-0834 (2), which retained the potency and selectivity of CGI-1746, but with much improved PK in preclinical animal models. Structure based design efforts drove this work as modifications to 1 were investigated at both the solvent exposed region as well as H3 binding pocket. However, in vitro metabolic evaluation of 2 revealed a non CYP-mediated metabolic process that was more prevalent in human than preclinical species (mouse, rat, dog, cyno), leading to a high-level of uncertainly in predicting human pharmacokinetics. Due to its promising potency, selectivity, and preclinical efficacy, a single dose IND was filed and 2 was taken in to a single dose phase I trial in healthy volunteers to quickly evaluate the human pharmacokinetics. In human, 2 was found to be highly labile at the exo-cyclic amide bond that links the tetrahydrobenzothiophene moiety to the central aniline ring, resulting in insufficient parent drug exposure. This information informed the back-up program and discovery of improved inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2016

Recent progress on nuclear receptor RORγ modulators.

Patrick Cyr; Sarah M. Bronner; James J. Crawford

The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators.


ACS Medicinal Chemistry Letters | 2015

Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pK a Polar Moiety.

Chudi Ndubaku; James J. Crawford; Joy Drobnick; Ignacio Aliagas; D Campbell; Ping Dong; Laura M. Dornan; S Duron; Jennifer Epler; Lewis J. Gazzard; Christopher E. Heise; Klaus P. Hoeflich; Diana Jakubiak; Hank La; Wendy Lee; B Lin; J.P Lyssikatos; J Maksimoska; R Marmorstein; Lesley J. Murray; T O'Brien; Angela Oh; Sreemathy Ramaswamy; Weiru Wang; Xianrui Zhao; Yu Zhong; Elizabeth Blackwood; Joachim Rudolph

Signaling pathways intersecting with the p21-activated kinases (PAKs) play important roles in tumorigenesis and cancer progression. By recognizing that the limitations of FRAX1036 (1) were chiefly associated with the highly basic amine it contained, we devised a mitigation strategy to address several issues such as hERG activity. The 5-amino-1,3-dioxanyl moiety was identified as an effective means of reducing pK a and logP simultaneously. When positioned properly within the scaffold, this group conferred several benefits including potency, pharmacokinetics, and selectivity. Mouse xenograft PK/PD studies were carried out using an advanced compound, G-5555 (12), derived from this approach. These studies concluded that dose-dependent pathway modulation was achievable and paves the way for further in vivo investigations of PAK1 function in cancer and other diseases.


Organic and Biomolecular Chemistry | 2009

Fast and efficient one step synthesis of dienamides

Jennifer E. Mathieson; James J. Crawford; Marc Schmidtmann; Rodolfo Marquez

A fast and efficient one-step approach to the synthesis of dienamides is reported. This concise methodology relies on the use of imides as reactive intermediates and allows for the preferential formation of Z,E-dienamides in good yields.


Journal of the American Chemical Society | 2016

Streamlined Total Synthesis of Uncialamycin and Its Application to the Synthesis of Designed Analogues for Biological Investigations

K. C. Nicolaou; Yanping Wang; Min Lu; Debashis Mandal; Manas R. Pattanayak; Ruocheng Yu; Akshay A. Shah; Jason S. Chen; Hongjun Zhang; James J. Crawford; Laxman Pasunoori; Yam B. Poudel; Naidu S. Chowdari; Chin Pan; Ayesha Nazeer; Sanjeev Gangwar; Gregory D. Vite; Emmanuel N. Pitsinos

From the enediyne class of antitumor antibiotics, uncialamycin is among the rarest and most potent, yet one of the structurally simpler, making it attractive for chemical synthesis and potential applications in biology and medicine. In this article we describe a streamlined and practical enantioselective total synthesis of uncialamycin that is amenable to the synthesis of novel analogues and renders the natural product readily available for biological and drug development studies. Starting from hydroxy- or methoxyisatin, the synthesis features a Noyori enantioselective reduction, a Yamaguchi acetylide-pyridinium coupling, a stereoselective acetylide-aldehyde cyclization, and a newly developed annulation reaction that allows efficient coupling of a cyanophthalide and a p-methoxy semiquinone aminal to forge the anthraquinone moiety of the molecule. Overall, the developed streamlined synthesis proceeds in 22 linear steps (14 chromatographic separations) and 11% overall yield. The developed synthetic strategies and technologies were applied to the synthesis of a series of designed uncialamycin analogues equipped with suitable functional groups for conjugation to antibodies and other delivery systems. Biological evaluation of a select number of these analogues led to the identification of compounds with low picomolar potencies against certain cancer cell lines. These compounds and others like them may serve as powerful payloads for the development of antibody drug conjugates (ADCs) intended for personalized targeted cancer therapy.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of highly potent and selective Bruton's tyrosine kinase inhibitors: Pyridazinone analogs with improved metabolic stability.

Wendy B. Young; James Barbosa; Peter Blomgren; Meire Bremer; James J. Crawford; Donna Dambach; Charles Eigenbrot; Steve Gallion; Adam R. Johnson; Jeffrey E. Kropf; Seung Ho Lee; Lichuan Liu; Joseph W. Lubach; Jen Macaluso; Pat Maciejewski; Scott Mitchell; Daniel F. Ortwine; Julie Di Paolo; Karin Reif; Heleen Scheerens; Aaron C. Schmitt; Xiaojing Wang; Harvey Wong; Jin-Ming Xiong; Jianjun Xu; Christine Yu; Zhongdong Zhao; Kevin S. Currie

BTK inhibitor GDC-0834 (1) was found to be rapidly metabolized in human studies, resulting in a suspension of clinical trials. The primary route of metabolism was through cleavage of the acyclic amide bond connecting the terminal tetrahydrobenzothiophene with the central linker aryl ring. SAR studies were focused on reducing metabolic cleavage of this amide, and resulted in the identification of several central aryl linker substituents that conferred improved stability. The most promising substituted aryl linkers were then incorporated into an optimized pyridazinone scaffold, resulting in the identification of lead analog 23, possessing improved potency, metabolic stability and preclinical properties.


Expert Opinion on Therapeutic Patents | 2017

RORγ antagonists and inverse agonists: a patent review

Sarah M. Bronner; Jason Zbieg; James J. Crawford

ABSTRACT Introduction: The transcription factor RORγ plays a critical role in the expression of pro-inflammatory cytokine interleukin IL-17 and is therefore an attractive target for the treatment of inflammatory diseases. Interest in this molecular target has been heightened by the advancement of orally and topically administered RORγ modulators into clinical trials. Areas covered: The present review seeks to summarize published patent applications from assignee companies that have disclosed Investigational New Drug (IND) filings for small molecule RORγ/RORγt antagonists and inverse agonists. Expert opinion: The field of RORγ research is extremely competitive, with the majority of companies targeting psoriasis as the primary disease indication. Vitae Pharmaceuticals is currently the most advanced, with a potential first-in-class oral RORγ-modulator for the treatment of psoriasis. Future efforts will likely expand into potential applications of RORγ-modulators in the lesser explored immune-related areas of rheumatoid arthritis, type 1 diabetes, lupus, and irritable bowel disorder, as well as cancer immunotherapy and castration-resistant prostate cancer.

Collaboration


Dive into the James J. Crawford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge