James J. S. Treanor
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James J. S. Treanor.
Pain | 2008
Narender R. Gavva; James J. S. Treanor; Andras Garami; Liang Fang; Sekhar Surapaneni; Anna Akrami; Francisco J. Alvarez; Annette Bak; Mary Darling; Anu Gore; Graham Jang; James P. Kesslak; Liyun Ni; Mark H. Norman; Gabrielle Palluconi; Mark J. Rose; Margaret Salfi; Edward Tan; Andrej A. Romanovsky; Christopher Banfield; Gudarz Davar
&NA; The vanilloid receptor TRPV1 has been identified as a molecular target for the treatment of pain associated with inflammatory diseases and cancer. Hence, TRPV1 antagonists have been considered for therapeutic evaluation in such diseases. During Phase I clinical trials with AMG 517, a highly selective TRPV1 antagonist, we found that TRPV1 blockade elicited marked, but reversible, and generally plasma concentration‐dependent hyperthermia. Similar to what was observed in rats, dogs, and monkeys, hyperthermia was attenuated after repeated dosing of AMG 517 (at the highest dose tested) in humans during a second Phase I trial. However, AMG 517 administered after molar extraction (a surgical cause of acute pain) elicited long‐lasting hyperthermia with maximal body temperature surpassing 40 °C, suggesting that TRPV1 blockade elicits undesirable hyperthermia in susceptible individuals. Mechanisms of AMG 517‐induced hyperthermia were then studied in rats. AMG 517 caused hyperthermia by inducing tail skin vasoconstriction and increasing thermogenesis, which suggests that TRPV1 regulates vasomotor tone and metabolic heat production. In conclusion, these results demonstrate that: (a) TRPV1‐selective antagonists like AMG 517 cannot be developed for systemic use as stand alone agents for treatment of pain and other diseases, (b) individual susceptibility influences magnitude of hyperthermia observed after TRPV1 blockade, and (c) TRPV1 plays a pivotal role as a molecular regulator for body temperature in humans.
The Journal of Neuroscience | 2007
Narender R. Gavva; Anthony W. Bannon; Sekhar Surapaneni; David N. Hovland; Sonya G. Lehto; Anu Gore; Todd Juan; Hong Deng; Bora Han; Lana Klionsky; Rongzhen Kuang; April Le; Rami Tamir; Jue Wang; Brad Youngblood; Dawn Zhu; Mark H. Norman; Ella Magal; James J. S. Treanor; Jean-Claude Louis
The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood–brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.
The Journal of Neuroscience | 2007
Alexandre A. Steiner; Victoria F. Turek; Maria Cecília Puntel de Almeida; Jeffrey J. Burmeister; Daniela L. Oliveira; Jennifer L. Roberts; Anthony W. Bannon; Mark H. Norman; Jean-Claude Louis; James J. S. Treanor; Narender R. Gavva; Andrej A. Romanovsky
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (Tb) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase Tb of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither Tb nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the Tb response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on Tb.
Journal of Pharmacology and Experimental Therapeutics | 2007
Narender R. Gavva; Anthony W. Bannon; David N. Hovland; Sonya G. Lehto; Lana Klionsky; Sekhar Surapaneni; David Immke; Charles Henley; Leyla Arik; Annette Bak; James O. Davis; Nadia Ernst; Gal Hever; Rongzhen Kuang; Licheng Shi; Rami Tamir; Jue Wang; Weiya Wang; Gary Zajic; Dawn Zhu; Mark H. Norman; Jean-Claude Louis; Ella Magal; James J. S. Treanor
Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics. Here, we report the in vitro and in vivo characterization of a novel and selective TRPV1 antagonist, N-(4-[6-(4-trifluoromethyl-phenyl)-pyrimidin-4-yloxy]-benzothiazol-2-yl)-acetamide I (AMG 517), and compare its pharmacology with that of a closely related analog, tert-butyl-2-(6-([2-(acetylamino)-1,3-benzothiazol-4-yl]oxy)pyrimidin-4-yl)-5-(trifluoromethyl)phenylcarbamate (AMG8163). Both AMG 517 and AMG8163 potently and completely antagonized capsaicin, proton, and heat activation of TRPV1 in vitro and blocked capsaicin-induced flinch in rats in vivo. To support initial clinical investigations, AMG 517 was evaluated in a comprehensive panel of toxicology studies that included in vivo assessments in rodents, dogs, and monkeys. The toxicology studies indicated that AMG 517 was generally well tolerated; however, transient increases in body temperature (hyperthermia) were observed in all species after AMG 517 dosing. To further investigate this effect, we tested and showed that the antipyretic, acetaminophen, suppressed the hyperthermia caused by TRPV1 blockade. We also showed that repeated administration of TRPV1 antagonists attenuated the hyperthermia response, whereas the efficacy in capsaicin-induced flinch model was maintained. In conclusion, these studies suggest that the transient hyperthermia elicited by TRPV1 blockade may be manageable in the development of TRPV1 antagonists as therapeutic agents. However, the impact of TRPV1 antagonist-induced hyperthermia on their clinical utility is still unknown.
Journal of Pharmacology and Experimental Therapeutics | 2006
Lana Klionsky; Rami Tamir; Bob Holzinger; Xiaojuan Bi; Jane Talvenheimo; Helen S. Kim; Frank Martin; Jean-Claude Louis; James J. S. Treanor; Narender R. Gavva
Transient receptor potential vanilloid type 1 (TRPV1) can be activated by multiple chemical and physical stimuli such as capsaicin, anandamide, protons, and heat. Capsaicin interacts with the binding pocket constituted by transmembrane regions 3 and 4, whereas protons act through residues in the prepore loop of TRPV1. Here, we report on characterization of polyclonal and monoclonal antibodies to the prepore loop of TRPV1. A rabbit anti-rat TRPV1 polyclonal antibody (Ab-156H) acted as a full antagonist of proton activation (IC50 values for pH 5 and 5.5 were 364.68 ± 29.78 and 28.31 ± 6.30 nM, respectively) and as a partial antagonist of capsaicin, heat, and pH 6 potentiated chemical ligand (anandamide and capsaicin) activation (50-79% inhibition). Ab-156H antagonism of TRPV1 is not affected by the conformation of the capsaicin-binding pocket because it is equally potent at wild-type (capsaicin-sensitive) rat TRPV1 and its T550I mutant (capsaicin-insensitive). With the goal of generating monoclonal antagonist antibodies to the prepore region of human TRPV1, we used a recently developed rabbit immunization protocol. Although rabbit polyclonal antiserum blocked human TRPV1 activation, rabbit monoclonal antibodies (identified on the basis of selective binding to Chinese hamster ovary cells expressing human TRPV1) did not block activation by either capsaicin or protons. Thus, rabbit polyclonal antibodies against rat and human TRPV1 prepore region seem to partially lock or stabilize the channel in the closed state, whereas rabbit anti-human TRPV1 monoclonal antibodies bind to the prepore region but do not lock or stabilize the channel conformation.
Bioorganic & Medicinal Chemistry Letters | 2012
Essa Hu; Roxanne Kunz; Shannon Rumfelt; Ning Chen; Roland W. Bürli; Chun Li; Kristin L. Andrews; Jiandong Zhang; Samer Chmait; Jeffrey H. Kogan; Michelle Lindstrom; Stephen A. Hitchcock; James J. S. Treanor
We report the discovery of 6,7-dimethoxy-4-(pyridin-3-yl)cinnolines as novel inhibitors of phosphodiesterase 10A (PDE10A). Systematic examination and analyses of structure-activity-relationships resulted in single digit nM potency against PDE10A. X-ray co-crystal structure revealed the mode of binding in the enzymes catalytic domain and the source of selectivity against other PDEs. High in vivo clearance in rats was addressed with the help of metabolite identification (ID) studies. These findings combined resulted in compound 39, a promising potent inhibitor of PDE10A with good in vivo metabolic stability in rats and efficacy in a rodent behavioral model.
Journal of Medicinal Chemistry | 2012
Essa Hu; Ji Ma; Christopher Biorn; Dianna Lester-Zeiner; Robert Cho; Shannon Rumfelt; Roxanne Kunz; Thomas Nixey; Klaus Michelsen; Silke Miller; Jianxia Shi; Jamie Wong; Geraldine Hill Della Puppa; Jessica Able; Santosh Talreja; Dah-Ren Hwang; Stephen A. Hitchcock; Amy Porter; David Immke; Jennifer R. Allen; James J. S. Treanor; Hang Chen
A radiolabeled tracer for imaging therapeutic targets in the brain is a valuable tool for lead optimization in CNS drug discovery and for dose selection in clinical development. We report the rapid identification of a novel phosphodiesterase 10A (PDE10A) tracer candidate using a LC-MS/MS technology. This structurally distinct PDE10A tracer, AMG-7980 (5), has been shown to have good uptake in the striatum (1.2% ID/g tissue), high specificity (striatum/thalamus ratio of 10), and saturable binding in vivo. The PDE10A affinity (K(D)) and PDE10A target density (B(max)) were determined to be 0.94 nM and 2.3 pmol/mg protein, respectively, using [(3)H]5 on rat striatum homogenate. Autoradiography on rat brain sections indicated that the tracer signal was consistent with known PDE10A expression pattern. The specific binding of [(3)H]5 to rat brain was blocked by another structurally distinct, published PDE10A inhibitor, MP-10. Lastly, our tracer was used to measure in vivo PDE10A target occupancy of a PDE10A inhibitor in rats using LC-MS/MS technology.
Journal of Medicinal Chemistry | 2014
Essa Hu; Ning Chen; Matthew P. Bourbeau; Paul E. Harrington; Kaustav Biswas; Roxanne Kunz; Kristin L. Andrews; Samer Chmait; Xiaoning Zhao; Carl D. Davis; Ji Ma; Jianxia Shi; Dianna Lester-Zeiner; Jean Danao; Jessica Able; Madelyn Cueva; Santosh Talreja; Thomas Kornecook; Hang Chen; Amy Porter; Randall W. Hungate; James J. S. Treanor; Jennifer R. Allen
We report the identification of a PDE10A clinical candidate by optimizing potency and in vivo efficacy of promising keto-benzimidazole leads 1 and 2. Significant increase in biochemical potency was observed when the saturated rings on morpholine 1 and N-acetyl piperazine 2 were changed by a single atom to tetrahydropyran 3 and N-acetyl piperidine 5. A second single atom modification from pyrazines 3 and 5 to pyridines 4 and 6 improved the inhibitory activity of 4 but not 6. In the in vivo LC-MS/MS target occupancy (TO) study at 10 mg/kg, 3, 5, and 6 achieved 86-91% occupancy of PDE10A in the brain. Furthermore, both CNS TO and efficacy in PCP-LMA behavioral model were observed in a dose dependent manner. With superior in vivo TO, in vivo efficacy and in vivo PK profiles in multiple preclinical species, compound 5 (AMG 579) was advanced as our PDE10A clinical candidate.
Journal of Medicinal Chemistry | 2013
Essa Hu; Roxanne Kunz; Ning Chen; Shannon Rumfelt; Aaron C. Siegmund; Kristin L. Andrews; Samer Chmait; Sharon Zhao; Carl D. Davis; Hang Chen; Dianna Lester-Zeiner; Ji Ma; Christopher Biorn; Jianxia Shi; Amy Porter; James J. S. Treanor; Jennifer R. Allen
Our development of PDE10A inhibitors began with an HTS screening hit (1) that exhibited both high p-glycoprotein (P-gp) efflux ratios in rat and human and poor metabolic stability. On the basis of cocrystal structure of 1 in human PDE10A enzyme, we designed a novel keto-benzimidazole 26 with comparable PDE10A potency devoid of efflux liabilities. On target in vivo coverage of PDE10A in rat brain was assessed using our previously reported LC-MS/MS receptor occupancy (RO) technology. Compound 26 achieved 55% RO of PDE10A at 30 mg/kg po and covered PDE10A receptors in rat brain in a dose-dependent manner. Cocrystal structure of 26 in PDE10A confirmed the binding mode of the novel scaffold. Further optimization resulted in the identification of keto-benzimidazole 34, which showed an increased in vivo efficacy of 57% RO in rats at 10 mg/kg po and an improved in vivo rat clearance and oral bioavailability.
Bioorganic & Medicinal Chemistry Letters | 2012
Robert M. Rzasa; Essa Hu; Shannon Rumfelt; Ning Chen; Kristin L. Andrews; Samer Chmait; James Richard Falsey; Wenge Zhong; Adrie D. Jones; Amy Porter; Steven W. Louie; Xiaoning Zhao; James J. S. Treanor; Jennifer R. Allen
We report the discovery of a novel series of biaryl ethers as potent and selective PDE10A inhibitors. Structure-activity studies improved the potency and decreased Pgp-mediated efflux found in the initial compound 4. X-ray crystallographic studies revealed two novel binding modes to the catalytic site of the PDE10A enzyme.