Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rami Tamir is active.

Publication


Featured researches published by Rami Tamir.


Cell | 1996

GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF

Shuqian Jing; Duanzhi Wen; Yanbin Yu; Paige Holst; Yi Luo; Mei Fang; Rami Tamir; Laarni Antonio; Zheng Hu; Rod Cupples; Jean-Claude Louis; Sylvia Hu; Bruce W. Altrock; Gary M. Fox

We report the expression cloning and characterization of GDNFR-alpha, a novel glycosylphosphatidylinositol-linked cell surface receptor for glial cell line-derived neurotrophic factor (GDNF). GDNFR-alpha binds GDNF specifically and mediates activation of the Ret protein-tyrosine kinase (PTK). Treatment of Neuro-2a cells expressing GDNFR-alpha with GDNF rapidly stimulates Ret autophosphorylation. Ret is also activated by treatment with a combination of GDNF and soluble GDNFR-alpha in cells lacking GDNFR-alpha, and this effect is blocked by a soluble Ret-Fc fusion protein. Ret activation by GDNF was also observed in cultured embryonic rat spinal cord motor neurons, a cell type that responds to GDNF in vivo. A model for the stepwise formation of a GDNF signal-transducing complex including GDNF, GDNFR-alpha, and the Ret PTK is proposed.


The Journal of Neuroscience | 2007

The Vanilloid Receptor TRPV1 Is Tonically Activated In Vivo and Involved in Body Temperature Regulation

Narender R. Gavva; Anthony W. Bannon; Sekhar Surapaneni; David N. Hovland; Sonya G. Lehto; Anu Gore; Todd Juan; Hong Deng; Bora Han; Lana Klionsky; Rongzhen Kuang; April Le; Rami Tamir; Jue Wang; Brad Youngblood; Dawn Zhu; Mark H. Norman; Ella Magal; James J. S. Treanor; Jean-Claude Louis

The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood–brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.


Journal of Pharmacology and Experimental Therapeutics | 2008

Antihyperalgesic Effects of (R,E)-N-(2-Hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a Novel Transient Receptor Potential Vanilloid Type 1 Modulator That Does Not Cause Hyperthermia in Rats

Sonya G. Lehto; Rami Tamir; Deng H; Lana Klionsky; Rongzhen Kuang; Le A; Lee D; Jean-Claude Louis; Ella Magal; Manning Bh; Rubino J; Sekhar Surapaneni; Tamayo N; Wang T; Judy Wang; Weiya Wang; Youngblood B; Zhang M; Dawn Zhu; Mark H. Norman; Narender R. Gavva

Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is exclusively mediated through TRPV1. Since antagonist-induced hyperthermia is considered a hurdle for developing TRPV1 antagonists as therapeutics, we investigated the possibility of eliminating hyperthermia while maintaining antihyperalgesia. Here, we report four potent and selective TRPV1 modulators with unique in vitro pharmacology profiles (profiles A through D) and their respective effects on body temperature. We found that profile C modulator, (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)acrylamide (AMG8562), blocks capsaicin activation of TRPV1, does not affect heat activation of TRPV1, potentiates pH 5 activation of TRPV1 in vitro, and does not cause hyperthermia in vivo in rats. We further profiled AMG8562 in an on-target (agonist) challenge model, rodent pain models, and tested for its side effects. We show that AMG8562 significantly blocks capsaicin-induced flinching behavior, produces statistically significant efficacy in complete Freunds adjuvant- and skin incision-induced thermal hyperalgesia, and acetic acid-induced writhing models, with no profound effects on locomotor activity. Based on the data shown here, we conclude that it is feasible to modulate TRPV1 in a manner that does not cause hyperthermia while maintaining efficacy in rodent pain models.


Journal of Pharmacology and Experimental Therapeutics | 2007

Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade

Narender R. Gavva; Anthony W. Bannon; David N. Hovland; Sonya G. Lehto; Lana Klionsky; Sekhar Surapaneni; David Immke; Charles Henley; Leyla Arik; Annette Bak; James O. Davis; Nadia Ernst; Gal Hever; Rongzhen Kuang; Licheng Shi; Rami Tamir; Jue Wang; Weiya Wang; Gary Zajic; Dawn Zhu; Mark H. Norman; Jean-Claude Louis; Ella Magal; James J. S. Treanor

Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics. Here, we report the in vitro and in vivo characterization of a novel and selective TRPV1 antagonist, N-(4-[6-(4-trifluoromethyl-phenyl)-pyrimidin-4-yloxy]-benzothiazol-2-yl)-acetamide I (AMG 517), and compare its pharmacology with that of a closely related analog, tert-butyl-2-(6-([2-(acetylamino)-1,3-benzothiazol-4-yl]oxy)pyrimidin-4-yl)-5-(trifluoromethyl)phenylcarbamate (AMG8163). Both AMG 517 and AMG8163 potently and completely antagonized capsaicin, proton, and heat activation of TRPV1 in vitro and blocked capsaicin-induced flinch in rats in vivo. To support initial clinical investigations, AMG 517 was evaluated in a comprehensive panel of toxicology studies that included in vivo assessments in rodents, dogs, and monkeys. The toxicology studies indicated that AMG 517 was generally well tolerated; however, transient increases in body temperature (hyperthermia) were observed in all species after AMG 517 dosing. To further investigate this effect, we tested and showed that the antipyretic, acetaminophen, suppressed the hyperthermia caused by TRPV1 blockade. We also showed that repeated administration of TRPV1 antagonists attenuated the hyperthermia response, whereas the efficacy in capsaicin-induced flinch model was maintained. In conclusion, these studies suggest that the transient hyperthermia elicited by TRPV1 blockade may be manageable in the development of TRPV1 antagonists as therapeutic agents. However, the impact of TRPV1 antagonist-induced hyperthermia on their clinical utility is still unknown.


Journal of Medicinal Chemistry | 2008

Design and Synthesis of Peripherally Restricted Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists

Nuria A. Tamayo; Hongyu Liao; Markian Stec; Xianghong Wang; Partha P. Chakrabarti; Dan Retz; Elizabeth M. Doherty; Sekhar Surapaneni; Rami Tamir; Anthony W. Bannon; Narender R. Gavva; Mark H. Norman

Transient receptor potential vanilloid 1 (TRPV1) channel antagonists may have clinical utility for the treatment of chronic nociceptive and neuropathic pain. We recently advanced a TRPV1 antagonist, 3 (AMG 517), into clinical trials as a new therapy for the treatment of pain. However, in addition to the desired analgesic effects, this TRPV1 antagonist significantly increased body core temperature following oral administration in rodents. Here, we report one of our approaches to eliminate or minimize the on-target hyperthermic effect observed with this and other TRPV1 antagonists. Through modifications of our clinical candidate, 3 a series of potent and peripherally restricted TRPV1 antagonists have been prepared. These analogues demonstrated on-target coverage in vivo but caused increases in body core temperature, suggesting that peripheral restriction was not sufficient to separate antagonism mediated antihyperalgesia from hyperthermia. Furthermore, these studies demonstrate that the site of action for TRPV1 blockade elicited hyperthermia is outside the blood-brain barrier.


Journal of Pharmacology and Experimental Therapeutics | 2006

A Polyclonal Antibody to the Prepore Loop of Transient Receptor Potential Vanilloid Type 1 Blocks Channel Activation

Lana Klionsky; Rami Tamir; Bob Holzinger; Xiaojuan Bi; Jane Talvenheimo; Helen S. Kim; Frank Martin; Jean-Claude Louis; James J. S. Treanor; Narender R. Gavva

Transient receptor potential vanilloid type 1 (TRPV1) can be activated by multiple chemical and physical stimuli such as capsaicin, anandamide, protons, and heat. Capsaicin interacts with the binding pocket constituted by transmembrane regions 3 and 4, whereas protons act through residues in the prepore loop of TRPV1. Here, we report on characterization of polyclonal and monoclonal antibodies to the prepore loop of TRPV1. A rabbit anti-rat TRPV1 polyclonal antibody (Ab-156H) acted as a full antagonist of proton activation (IC50 values for pH 5 and 5.5 were 364.68 ± 29.78 and 28.31 ± 6.30 nM, respectively) and as a partial antagonist of capsaicin, heat, and pH 6 potentiated chemical ligand (anandamide and capsaicin) activation (50-79% inhibition). Ab-156H antagonism of TRPV1 is not affected by the conformation of the capsaicin-binding pocket because it is equally potent at wild-type (capsaicin-sensitive) rat TRPV1 and its T550I mutant (capsaicin-insensitive). With the goal of generating monoclonal antagonist antibodies to the prepore region of human TRPV1, we used a recently developed rabbit immunization protocol. Although rabbit polyclonal antiserum blocked human TRPV1 activation, rabbit monoclonal antibodies (identified on the basis of selective binding to Chinese hamster ovary cells expressing human TRPV1) did not block activation by either capsaicin or protons. Thus, rabbit polyclonal antibodies against rat and human TRPV1 prepore region seem to partially lock or stabilize the channel in the closed state, whereas rabbit anti-human TRPV1 monoclonal antibodies bind to the prepore region but do not lock or stabilize the channel conformation.


Bioorganic & Medicinal Chemistry Letters | 2008

Substituted aryl pyrimidines as potent and soluble TRPV1 antagonists.

Markian Stec; Yunxin Bo; Partha P. Chakrabarti; Lillian Liao; Mqhele Ncube; Nuria A. Tamayo; Rami Tamir; Narender R. Gavva; James J. S. Treanor; Mark H. Norman

Clinical candidate AMG 517 (1) is a potent antagonist toward multiple modes of activation of TRPV1; however, it suffers from poor solubility. Analogs with various substituents at the R region of 3 were prepared to improve the solubility while maintaining the potent TRPV1 activity of 1. Compounds were identified that maintained potency, had good pharmacokinetic properties, and improved solubility relative to 1.


Bioorganic & Medicinal Chemistry Letters | 2008

4-Aminopyrimidine tetrahydronaphthols : A series of novel vanilloid receptor-1 antagonists with improved solubility properties

Elizabeth M. Doherty; Daniel Martin Retz; Narender R. Gavva; Rami Tamir; James J. S. Treanor; Mark H. Norman

8-(6-(4-(Trifluoromethyl)phenyl)pyrimidin-4-ylamino)-1,2,3,4-tetrahydronaphthalen-2-ol (4) and analogs (5-10) were shown to be potent inhibitors of human and rat TRPV1 in vitro with increased solubility over our previous series. Synthesis, SAR, and improvements in metabolic stability and absorption of these compounds are described herein.


European Journal of Pain | 2007

381 DIFFERENTIAL PHARMACOLOGY OF TRPV1 ANTAGONISTS DETERMINES THE MAGNITUDE OF BODY TEMPERATURE CHANGES IN RATS

Sonya G. Lehto; Rami Tamir; Dawn Zhu; A. Le; B. Youngblood; David Immke; Mark H. Norman; Ella Magal; Jean Claude Louis; James J. S. Treanor; Narender R. Gavva

was evaluated in the streptozotocin (STZ) model for diabetic neuropathic pain, the vincristine model for chemotherapy-induced neuropathic pain, a bone cancer model, the monosodium iodo acetate (MIA) model for osteoarthritic pain and the tumour necrosis factor alpha (TNFa) model for chronic muscle pain. In each model various endpoints were assessed including thermal and tactile allodynia and thermal and tactile hyperalgesia. In the STZ model lacosamide was active on all pain parameters. Moreover, when compared to clinically used analgesics such as amitryptiline, pregabalin, gabapentin, levetiracetam, lamotrigine or venlafaxine lacosamide was the compound with the broadest efficacy. Lacosamide was also active in models for cancer pain, as evidenced by potent effects against vincristineinduced hyperalgesia and bone cancer pain. Furthermore, muscle hyperalgesia induced by TNFa was more potently reduced by lacosamide as compared to pregabalin. Finally, lacosamide attenuated arthritic pain induced by MIA in rats. These results suggest that lacosamide may specifically have antihyperalgesic activity under conditions of chronic neuropathic, cancer, inflammatory and musculoskeletal pain.


Journal of Pharmacology and Experimental Therapeutics | 2004

AMG 9810 [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a Novel Vanilloid Receptor 1 (TRPV1) Antagonist with Antihyperalgesic Properties

Narender R. Gavva; Rami Tamir; Yusheng Qu; Lana Klionsky; Tie J. Zhang; David Immke; Judy Wang; Dawn Zhu; Todd W. Vanderah; Frank Porreca; Elizabeth M. Doherty; Mark H. Norman; Kenneth D. Wild; Anthony W. Bannon; Jean Claude Louis; James J. S. Treanor

Researchain Logo
Decentralizing Knowledge