Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Lyons-Weiler is active.

Publication


Featured researches published by James Lyons-Weiler.


Blood | 2012

Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes

Angela Montecalvo; Adriana T. Larregina; William J. Shufesky; Donna B. Stolz; Mara L. Sullivan; Jenny M. Karlsson; Catherine J. Baty; Gregory A. Gibson; Geza Erdos; Zhiliang Wang; Jadranka Milosevic; Olga Tkacheva; Sherrie J. Divito; Rick Jordan; James Lyons-Weiler; Simon C. Watkins; Adrian E. Morelli

Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.


Placenta | 2009

Altered Global Gene Expression in First Trimester Placentas of Women Destined to Develop Preeclampsia

Sandra A. Founds; Yvette P. Conley; James Lyons-Weiler; Arun Jeyabalan; W. Allen Hogge; Kirk P. Conrad

BACKGROUND Preeclampsia is a pregnancy-specific disorder that remains a leading cause of maternal, fetal and neonatal morbidity and mortality, and is associated with risk for future cardiovascular disease. There are no reliable predictors, specific preventative measures or treatments other than delivery. A widely held view is that the antecedents of preeclampsia lie with impaired placentation in early pregnancy. Accordingly, we hypothesized dysregulation of global gene expression in first trimester placentas of women who later manifested preeclampsia. METHODS Surplus chorionic villus sampling (CVS) tissues were collected at 10-12 weeks gestation in 160 patients with singleton fetuses. Four patients developed preeclampsia, and their banked CVS specimens were matched to 8 control samples from patients with unaffected pregnancies. Affymetrix HG-U133 Plus 2.0 GeneChips were utilized for microarray analysis. Naïve Bayes prediction modeling and pathway analysis were conducted. qRT-PCR examined three of the dysregulated genes. RESULTS Thirty-six differentially expressed genes were identified in the preeclampsia placentas. qRT-PCR verified the microarray analysis. Thirty-one genes were down-regulated. Many were related to inflammation/immunoregulation and cell motility. Decidual gene dysregulation was prominent. No evidence was found for alterations in hypoxia and oxidative stress regulated genes. CONCLUSIONS To our knowledge, this is the first study to show dysregulation of gene expression in the early placentas of women approximately 6 months before developing preeclampsia, thereby reinforcing a placental origin of the disorder. We hypothesize that placentation in preeclampsia is compromised in the first trimester by maternal and fetal immune dysregulation, abnormal decidualization, or both, thereby impairing trophoblast invasion. Several of the genes provide potential targets for the development of clinical biomarkers in maternal blood during the first trimester. Supplementary materials are available for this article via the publishers online edition.


Journal of Clinical Microbiology | 2005

Microbial Risk Indicators of Early Childhood Caries

Patricia Corby; James Lyons-Weiler; Walter A. Bretz; Thomas C. Hart; Jørn A. Aas; Tahani Boumenna; John A. Goss; A. L. Corby; H. M. Junior; Robert J. Weyant; Bruce J. Paster

ABSTRACT The aim of this study was to use molecular identification methods, such as 16S RNA gene sequence and reverse-capture checkerboard hybridization, for identification of the bacteria associated with dental caries and with dental health in a subset of 204 twins aged 1.5 to 7 years old. A total of 448 plaque samples (118 collected from caries-free subjects and 330 from caries-active subjects) were used for analysis. We compared the bacteria found in biofilms of children exhibiting severe dental caries, with different degrees of lesion severity, with those found in biofilms of caries-free children. A panel of 82 bacterial species was selected, and a PCR-based reverse-capture checkerboard method was used for detection. A simple univariate test was used to determine the overabundance and underabundance of bacterial species in the diseased and in the healthy groups. Features identified with this univariate test were used to construct a probabilistic disease prediction model. Furthermore, a method for the analysis of global patterns of gene expression was performed to permit simultaneous analysis of the abundance of significant species by allowing cross-bacterial comparisons of abundance profiles between caries-active and caries-free subjects. Our results suggested that global patterns of microbial abundance in this population are very distinctive. The top bacterial species found to be overabundant in the caries-active group were Actinomyces sp. strain B19SC, Streptococcus mutans, and Lactobacillus spp., which exhibited an inverse relationship to beneficial bacterial species, such as Streptococcus parasanguinis, Abiotrophia defectiva, Streptococcus mitis, Streptococcus oralis, and Streptococcus sanguinis.


Arthritis & Rheumatism | 2011

Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension.

Eileen Hsu; Haiwen Shi; Rick Jordan; James Lyons-Weiler; Joseph M. Pilewski; Carol A. Feghali-Bostwick

OBJECTIVE Pulmonary complications, including pulmonary fibrosis (PF) and pulmonary arterial hypertension (PAH), are the leading cause of mortality in patients with systemic sclerosis (SSc). The aim of this study was to compare the molecular fingerprint of lung tissue and matching primary fibroblasts from patients with SSc with that of lung tissue and fibroblasts from normal donors, patients with idiopathic pulmonary fibrosis (IPF), and patients with idiopathic pulmonary arterial hypertension (IPAH). METHODS Lung tissue samples were obtained from 33 patients with SSc who underwent lung transplantation. Tissues and cells from a subgroup of SSc patients with predominantly PF or PAH were compared to those from normal donors, patients with IPF, and patients with IPAH. Microarray data were analyzed using efficiency analysis for determination of the optimal data-processing methods. Real-time polymerase chain reaction and immunohistochemistry were used to confirm differential levels of messenger RNA and protein, respectively. RESULTS Consensus efficiency analysis identified 242 and 335 genes that were differentially expressed in lungs and primary fibroblasts, respectively. SSc-PF and IPF lungs shared enriched functional groups in genes implicated in fibrosis, insulin-like growth factor signaling, and caveolin-mediated endocytosis. Gene functional groups shared by SSc-PAH and IPAH lungs included those involved in antigen presentation, chemokine activity, and interleukin-17 signaling. CONCLUSION Using microarray analysis on carefully phenotyped SSc and comparator lung tissues, we demonstrated distinct molecular profiles in tissues and fibroblasts from patients with SSc-associated lung disease compared to idiopathic forms of lung disease. Unique molecular signatures were generated that are disease specific (SSc) and phenotype specific (PF versus PAH). These signatures provide new insights into the pathogenesis and potential therapeutic targets of SSc-related lung disease.


Applied Bioinformatics | 2004

caGEDA: a web application for the integrated analysis of global gene expression patterns in cancer

Satish Patel; James Lyons-Weiler

The explosion of microarray data from pilot studies, basic research and large-scale clinical trials requires the development of integrative computational tools that can not only analyse gene expression patterns but that can also evaluate the methods of analysis adopted and then provide a boost to post-analysis translational interpretation of those patterns. We have developed a web application called caGEDA (cancer gene expression data analyzer) that can: (1) upload gene expression profiles from cDNA or oligonucleotide microarrays; (2) conduct a diverse range of serial linear normalisations; (3) identify differentially expressed genes using a variety of tests — either threshold or permutation tests; (4) produce tables of literature references to papers reporting that specific genes (identified by accession numbers) are up- or down-regulated in specific cancers; (5) estimate the error of sample class prediction using the significant gene set for features; (6) perform low-bias and accurate validated learning using three computational validation techniques (leave-one-out validation, k-fold validation, random resampling validation); and (7) validate a classifier with a randomly selected or user-defined validation set. Significant genes are reported in a table of links to entries in the following databases: LocusLink, Genome View, UCSC, Ensembl, UniGene, dbSNP, AmiGO and OMIM. caGEDA is seamlessly integrated via embedded forms with UCSD’s (University of California at San Diego) 2HAPI server (for medical subject heading (MeSH) term exploration) and EZ-Retrieve (to identify common transcription factors located upstream of sets of genes that exhibit similar modes of differential expression). caGEDA offers a variety of previously described and novel tests for differentially expressed genes, most notably the permutation percentile separability test, which is most appropriate for identifying genes that are significantly differentially expressed in a subset of patients. caGEDA, which is open source and free to academic users, will soon be greatly enhanced by operating with the components of the National Cancer Institute’s new cancer bioinformatics grid (caBIG).


Clinical Cancer Research | 2005

Prediction of Lymph Node Metastasis by Analysis of Gene Expression Profiles in Primary Lung Adenocarcinomas

Liqiang Xi; James Lyons-Weiler; Michael C. Coello; Xin Huang; William E. Gooding; James D. Luketich; Tony E. Godfrey

Purpose: Lymph node status is a strong predictor of outcome for lung cancer patients. Recently, several reports have hinted that gene expression profiles of primary tumor may be able to predict node status. The goals of this study were to determine if microarray data could be used to accurately classify patients with regard to pathologic lymph node status, and to determine if this analysis could identify patients at risk for occult disease and worse survival. Experimental Design: Two previously published lung adenocarcinoma microarray data sets were reanalyzed. Patients were separated into two groups based on pathologic lymph node positive (pN+) or negative (pN0) status, and prediction analysis of microarray (PAM) was used for training and validation to classify nodal status. Overall survival analysis was performed based on PAM classifications. Results: In the training phase, a 318-gene set gave classification accuracy of 88.4% when compared with pathology. Survival was significantly worse in PAM-positive compared with PAM-negative patients overall (P < 0.0001) and also when confined to pN0 patients only (P = 0.0037). In the validation set, classification accuracy was again 94.1% in the pN+ patients but only 21.2% in the pN0 patients. However, among the pN0 patients, recurrence rates and overall survival were significantly worse in the PAM-positive compared with PAM-negative patients (P = 0.0258 and 0.0507). Conclusions: Analysis of gene expression profiles from primary tumor may predict lymph node status but frequently misclassifies pN0 patients as node positive. Recurrence rates and overall survival are worse in these “misclassified” patients, implying that they may in fact have occult disease spread.


Journal of The American Society of Nephrology | 2006

Proteomic Analysis of Urine in Kidney Transplant Patients with BK Virus Nephropathy

Timo Jahnukainen; David E. Malehorn; Mai Sun; James Lyons-Weiler; William L. Bigbee; Gaurav Gupta; Ron Shapiro; Parmjeet Randhawa; Richard Pelikan; Milos Hauskrecht; Abhay Vats

The differentiation of BK virus-associated renal allograft nephropathy (BKVAN) from acute allograft rejection (AR) in renal transplant recipients is an important clinical problem because the treatment can be diametrically opposite for the two conditions. The aim of this discovery-phase biomarker development study was to examine feasibility of developing a noninvasive method to differentiate BKVAN from AR. Surface-enhanced laser desorption/ionization (SELDI) time-of-flight mass spectrometry analysis was used to compare proteomic profiles of urine samples of 21 patients with BKVAN, 28 patients with AR (Banff Ia to IIb), and 29 patients with stable graft function. SELDI analysis showed proteomic profiles that were significantly different in the BKVAN group versus the AR and stable transplant groups. Peaks that corresponded to m/z values of 5.872, 11.311, 11.929, 12.727, and 13.349 kD were significantly higher in patients with BKVAN. Bioinformatics analyses allowed distinction of profiles of patients with BKVAN from patients with AR and stable patients. SELDI profiles also showed a high degree of reproducibility. Proteomic analysis of urine may offer a noninvasive way to differentiate BKVAN from AR in clinical practice. The identification of individual proteomic peaks can improve further the clinical utility of this screening method.


Twin Research and Human Genetics | 2007

Heritability of oral microbial species in caries-active and caries-free twins

Patricia Corby; Walter A. Bretz; Thomas C. Hart; Nicholas J. Schork; Jennifer Wessel; James Lyons-Weiler; Bruce J. Paster

Oral microbes that colonize in the mouths of humans contribute to disease susceptibility, but it is unclear if host genetic factors mediate colonization. We therefore tested the hypothesis that the levels at which oral microbes colonize in the mouth are heritable. Dental plaque biofilms were sampled from intact tooth surfaces of 118 caries-free twins. An additional 86 caries-active twins were sampled for plaque from carious lesions and intact tooth surfaces. Using a reverse capture checkerboard assay the relative abundance of 82 bacterial species was determined. An integrative computational predictive model determined microbial abundance patterns of microbial species in caries-free twins as compared to caries-active twins. Heritability estimates were calculated for the relative microbial abundance levels of the microbial species in both groups. The levels of 10 species were significantly different in healthy individuals than in caries-active individuals, including, A. defectiva, S. parasanguinis, S. mitis/oralis, S. sanguinis, S. cristatus, S. salivarius, Streptococcus sp. clone CH016, G. morbillorum and G. haemolysans. Moderate to high heritability estimates were found for these species (h(2) = 56%-80%, p < .0001). Similarity of the overall oral microbial flora was also evident in caries-free twins from multivariate distance matrix regression analysis. It appears that genetic and/or familial factors significantly contribute to the colonization of oral beneficial species in twins.


Virology | 2010

Cellular factors associated with latency and spontaneous Epstein–Barr virus reactivation in B-lymphoblastoid cell lines

Michael L. Davies; Shushen Xu; James Lyons-Weiler; Adam Rosendorff; Steven A. Webber; Laura R. Wasil; David Rowe

EBV-immortalized B-lymphoblastoid cell lines are used as models for cellular transformation and as antigen-presenting cells in immunological assays. LCLs vary in surface markers and other phenotypic properties, but it is not known how this heterogeneity relates to the EBV life cycle. To explore correlations, we examined 62 LCLs for cellular and viral phenotypes. LCLs generated from pediatric and adult donors could similarly be categorized as either low in EBV copy number or fluctuating within a high range. High-copy status accompanied higher lytic viral gene expression and lower latent gene expression. Inhibiting lytic EBV replication did not affect cellular phenotype or lytic switch protein expression, indicating that an LCLs lytic permissivity was a stable property. Among the cellular genes overexpressed in permissive LCLs were unfolded protein response genes and plasma cell markers. Among genes overexpressed in non-permissive LCLs were transcription factors involved in maintaining B cell lineage, in particular EBF1. This study suggests previously undetected mechanisms by which cellular pathways influence the lytic reactivation of EBV.


Biological Psychiatry | 2015

Direct Regulation of Diurnal Drd3 Expression and Cocaine Reward by NPAS2

Angela R. Ozburn; Edgardo Falcon; Alan Twaddle; Alexandria L. Nugent; Andrea G. Gillman; Sade Spencer; Rachel Arey; Shibani Mukherjee; James Lyons-Weiler; David W. Self; Colleen A. McClung

BACKGROUND Circadian gene disruptions are associated with the development of psychiatric disorders, including addiction. However, the mechanisms by which circadian genes regulate reward remain poorly understood. METHODS We used mice with a mutation in Npas2 and adeno-associated virus-short hairpin RNA mediated knockdown of Npas2 and Clock in the nucleus accumbens (NAc). We performed conditioned place preference assays. We utilized cell sorting quantitative real-time polymerase chain reaction, and chromatin immunoprecipitation followed by deep sequencing. RESULTS Npas2 mutants exhibit decreased sensitivity to cocaine reward, which is recapitulated with a knockdown of neuronal PAS domain protein 2 (NPAS2) specifically in the NAc, demonstrating the importance of NPAS2 in this region. Interestingly, reducing circadian locomotor output cycles kaput (CLOCK) (a homologue of NPAS2) in the NAc had no effect, suggesting an important distinction in NPAS2 and CLOCK function. Furthermore, we found that NPAS2 expression is restricted to Drd1 expressing neurons while CLOCK is ubiquitous. Moreover, NPAS2 and CLOCK have distinct temporal patterns of DNA binding, and we identified novel and unique binding sites for each protein. We identified the Drd3 dopamine receptor as a direct transcriptional target of NPAS2 and found that NPAS2 knockdown in the NAc disrupts its diurnal rhythm in expression. Chronic cocaine treatment likewise disrupts the normal rhythm in Npas2 and Drd3 expression in the NAc, which may underlie behavioral plasticity in response to cocaine. CONCLUSIONS Together, these findings identify an important role for the circadian protein, NPAS2, in the NAc in the regulation of dopamine receptor expression and drug reward.

Collaboration


Dive into the James Lyons-Weiler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rick Jordan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satish Patel

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna B. Stolz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Haiwen Shi

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge