Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noham Wolpe is active.

Publication


Featured researches published by Noham Wolpe.


Brain | 2014

The medial frontal-prefrontal network for altered awareness and control of action in corticobasal syndrome

Noham Wolpe; James W. Moore; Charlotte L. Rae; Timothy Rittman; Ellemarije Altena; Patrick Haggard; James B. Rowe

The volitional impairments of alien limb and apraxia are a defining feature of the corticobasal syndrome, but a limited understanding of their neurocognitive aetiology has hampered progress towards effective treatments. Here we combined several key methods to investigate the mechanism of impairments in voluntary action in corticobasal syndrome. We used a quantitative measure of awareness of action that is based on well-defined processes of motor control; structural and functional anatomical information; and evaluation against the clinical volitional disorders of corticobasal syndrome. In patients and healthy adults we measured ‘intentional binding’, the perceived temporal attraction between voluntary actions and their sensory effects. Patients showed increased binding of the perceived time of actions towards their effects. This increase correlated with the severity of alien limb and apraxia, which we suggest share a core deficit in motor control processes, through reduced precision in voluntary action signals. Structural neuroimaging analyses showed the behavioural variability in patients was related to changes in grey matter volume in pre-supplementary motor area, and changes in its underlying white matter tracts to prefrontal cortex. Moreover, changes in functional connectivity at rest between the pre-supplementary motor area and prefrontal cortex were proportional to changes in binding. These behavioural, structural and functional results converge to reveal the frontal network for altered awareness and control of voluntary action in corticobasal syndrome, and provide candidate markers to evaluate new therapies.


Experimental Brain Research | 2013

Cue integration and the perception of action in intentional binding

Noham Wolpe; Patrick Haggard; Hartwig R. Siebner; James B. Rowe

Abstract‘Intentional binding’ describes the perceived temporal attraction between a voluntary action and its sensory consequence. Binding has been used in health and disease as an indirect measure of awareness of action or agency, that is, the sense that one controls one’s own actions. It has been proposed that binding results from cue integration, in which a voluntary action provides information about the timing of its consequences or vice versa. The perception of the timing of either event is then a weighted average, determined according to the reliability of each of these two cues. Here we tested the contribution of cue integration to the perception of action and its sensory effect in binding, that is, action and tone binding, by manipulating the sensory reliability of the outcome tone. As predicted, when tone reliability was reduced, action binding was diminished and tone binding was increased. However, further analyses showed that cue integration accounted for changes in action binding, but not tone binding. These findings establish a role for cue integration in action binding and support the growing evidence suggesting that action and tone binding are, at least in part, driven by distinct mechanisms.


The Journal of Neuroscience | 2011

Sex Differences in the Use of Anticipatory Brain Activity to Encode Emotional Events

Giulia Galli; Noham Wolpe; Leun J. Otten

Women and men differ in the way they experience emotional events. Previous work has indicated that the impact of an emotional event depends on how it is anticipated. Separately, it has been shown that anticipation affects memory formation. Here, we assessed whether anticipatory brain activity influences the encoding of emotional events into long-term memory and, in addition, how biological sex affects the use of such activity. Electrical brain activity was recorded from the scalps of healthy men and women while they performed an incidental encoding task (indoor/outdoor judgments) on pleasant, unpleasant, and neutral pictures. Pictures were preceded by a cue that indicated the valence of the upcoming item. Memory was tested after a 20 min delay with a recognition task incorporating the remember/know procedure. Brain activity before picture onset predicted later memory of an event. Crucially, the role of anticipatory activity depended entirely on the valence of a picture and the sex of an individual. Right-lateralized anticipatory activity selectively influenced the encoding of unpleasant pictures in women, but not in men. These findings indicate that anticipatory processes influence the way in which women encode negative events into memory. The selective use of such activity may indicate that anticipatory activity is one mechanism by which individuals regulate their emotions.


Frontiers in Human Neuroscience | 2014

Beyond the "urge to move": objective measures for the study of agency in the post-Libet era

Noham Wolpe; James B. Rowe

The investigation of human volition is a longstanding endeavor from both philosophers and researchers. Yet because of the major challenges associated with capturing voluntary movements in an ecologically relevant state in the research environment, it is only in recent years that human agency has grown as a field of cognitive neuroscience. In particular, the seminal work of Libet et al. (1983) paved the way for a neuroscientific approach to agency. Over the past decade, new objective paradigms have been developed to study agency, drawing upon emerging concepts from cognitive and computational neuroscience. These include the chronometric approach of Libet’s study which is embedded in the “intentional binding” paradigm, optimal motor control theory and most recent insights from active inference theory. Here we review these principal methods and their application to the study of agency in health and the insights gained from their application to neurological and psychiatric disorders. We show that the neuropsychological paradigms that are based upon these new approaches have key advantages over traditional experimental designs. We propose that these advantages, coupled with advances in neuroimaging, create a powerful set of tools for understanding human agency and its neurobiological basis.


Nature Communications | 2016

Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits

Noham Wolpe; James N. Ingram; Kamen A. Tsvetanov; Linda Geerligs; Rogier A. Kievit; Richard N. Henson; Daniel M. Wolpert; Cam-CAN; James B. Rowe

The control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation—a reduction in the perceived intensity of sensations from self-generated compared with external actions. Here we show that sensorimotor attenuation occurs in 98% of adults in a population-based cohort (n=325; 18–88 years; the Cambridge Centre for Ageing and Neuroscience). Importantly, attenuation increases with age, in proportion to reduced sensory sensitivity. This effect is associated with differences in the structure and functional connectivity of the pre-supplementary motor area (pre-SMA), assessed with magnetic resonance imaging. The results suggest that ageing alters the balance between the sensorium and predictive models, mediated by the pre-SMA and its connectivity in frontostriatal circuits. This shift may contribute to the motor and cognitive changes observed with age.


Frontiers in Psychology | 2015

Dopaminergic modulation of positive expectations for goal-directed action: evidence from Parkinson’s disease

Noham Wolpe; Cristina Nombela; James B. Rowe

Parkinson’s disease (PD) impairs the control of movement and cognition, including the planning of action and its consequences. This provides the opportunity to study the dopaminergic influences on the perception and awareness of action. Here we examined the perception of the outcome of a goal-directed action made by medicated patients with PD. A visuomotor task probed the integration of sensorimotor signals with the positive expectations of outcomes (Self priors), which in healthy adults bias perception toward success in proportion to trait optimism. We tested the hypotheses that (i) the priors on the perception of the consequences of one’s own actions differ between patients and age- and sex-matched controls, and (ii) that these priors are modulated by the levodopa dose equivalent (LDEs) in patients. There was no overall difference between patients and controls in the perceptual priors used. However, the precision of patient priors was inversely related to their LDE. Patients with high LDE showed more accurate priors, representing predictions that were closer to the true distribution of performance. Such accuracy has previously been demonstrated when observing the actions of others, suggesting abnormal awareness of action in these patients. These results confirm a link between dopamine and the positive expectation of the outcome of one’s own actions, and may have implications for the management of PD.


Movement Disorders | 2016

Time on timing: dissociating premature responding from interval sensitivity in Parkinson's disease

Jiaxiang Zhang; Cristina Nombela; Noham Wolpe; Roger A. Barker; James B. Rowe

Parkinsons disease (PD) can cause impulsivity with premature responses, but there are several potential mechanisms. We proposed a distinction between poor decision‐making and the distortion of temporal perception. Both effects may be present and interact, but with different clinical and pharmacological correlates.


bioRxiv | 2018

Motor learning decline with age is related to differences in the explicit memory system

Noham Wolpe; James N. Ingram; Kamen A. Tsvetanov; Richard N. Henson; Rogier A. Kievit; Daniel M. Wolpert; James B. Rowe

The ability to adapt one’s movements to changes in the environment is fundamental in everyday life, but this ability changes across the lifespan. Although often regarded as an ‘implicit’ process, recent research has also linked motor adaptation with ‘explicit’ learning processes. To understand how these processes contribute to differences in motor adaptation with age, we combined a visuomotor learning paradigm with cognitive tasks that measure implicit and explicit processes, and structural brain imaging. In a large population-based cohort from the Cambridge Centre for Ageing and Neuroscience (n=322, aged 18-89 years) we first confirmed that the degree of adaptation to an angular perturbation of visual feedback declined with age. There were no associations between adaptation and sensory attenuation, which has been previously hypothesised to contribute to implicit motor learning. However, interactions between age and scores on two independent memory tasks showed that explicit memory performance was a progressively stronger determinant of motor learning with age. Similarly, interactions between age and grey matter volume in the medial temporal lobe, amygdala and hippocampus showed that grey matter volume in these regions became a stronger determinant of adaptation in older adults. The convergent behavioural and structural imaging results suggest that age-related differences in the explicit memory system is a contributor to the decline in motor adaptation in older age. These results may reflect the more general compensatory reliance on cognitive strategies to maintain motor performance with age. SIGNIFICANCE STATEMENT The central nervous system has a remarkable capacity to learn new motor skills and adapt to new environmental dynamics. This capacity is impaired with age, and in many brain disorders. We find that explicit memory performance and its associated medial temporal brain regions deteriorate with age, but the association between this brain system and individual differences in motor learning becomes stronger in older adults. We propose that these results reflect an increased reliance on cognition in order to maintain adaptive motor skill performance. This difference in learning strategy has implications for interventions to improve motor skills in older adults.


The Journal of Neuroscience | 2018

Activity and connectivity differences underlying inhibitory control across the adult life span

Kamen A. Tsvetanov; Zheng Ye; Laura E. Hughes; David Samu; Matthias S. Treder; Noham Wolpe; Lorraine K. Tyler; James B. Rowe

Inhibitory control requires precise regulation of activity and connectivity within multiple brain networks. Previous studies have typically evaluated age-related changes in regional activity or changes in interregional interactions. Instead, we test the hypothesis that activity and connectivity make distinct, complementary contributions to performance across the life span and the maintenance of successful inhibitory control systems. A representative sample of healthy human adults in a large, population-based life span cohort performed an integrated Stop-Signal (SS)/No-Go task during functional magnetic resonance imaging (n = 119; age range, 18–88 years). Individual differences in inhibitory control were measured in terms of the SS reaction time (SSRT), using the blocked integration method. Linear models and independent components analysis revealed that individual differences in SSRT correlated with both activity and connectivity in a distributed inhibition network, comprising prefrontal, premotor, and motor regions. Importantly, this pattern was moderated by age, such that the association between inhibitory control and connectivity, but not activity, differed with age. Multivariate statistics and out-of-sample validation tests of multifactorial functional organization identified differential roles of activity and connectivity in determining an individuals SSRT across the life span. We propose that age-related differences in adaptive cognitive control are best characterized by the joint consideration of multifocal activity and connectivity within distributed brain networks. These insights may facilitate the development of new strategies to support cognitive ability in old age. SIGNIFICANCE STATEMENT The preservation of cognitive and motor control is crucial for maintaining well being across the life span. We show that such control is determined by both activity and connectivity within distributed brain networks. In a large, population-based cohort, we used a novel whole-brain multivariate approach to estimate the functional components of inhibitory control, in terms of their activity and connectivity. Both activity and connectivity in the inhibition network changed with age. But only the association between performance and connectivity, not activity, differed with age. The results suggest that adaptive control is best characterized by the joint consideration of multifocal activity and connectivity. These insights may facilitate the development of new strategies to maintain cognitive ability across the life span in health and disease.


Scientific Reports | 2018

Sensory attenuation in Parkinson’s disease is related to disease severity and dopamine dose

Noham Wolpe; Cam-CAN; Jiaxiang Zhang; Cristina Nombela; James N. Ingram; Daniel M. Wolpert; James B. Rowe

Abnormal initiation and control of voluntary movements are among the principal manifestations of Parkinson’s disease (PD). However, the processes underlying these abnormalities and their potential remediation by dopamine treatment remain poorly understood. Normally, movements depend on the integration of sensory information with the predicted consequences of action. This integration leads to a suppression in the intensity of predicted sensations, reflected in a ‘sensory attenuation’. We examined this integration process and its relation to dopamine in PD, by measuring sensory attenuation. Patients with idiopathic PD (n = 18) and population-derived controls (n = 175) matched a set of target forces applied to their left index finger by a torque motor. To match the force, participants either pressed with their right index finger (‘Direct’ condition) or moved a knob that controlled a motor through a linear potentiometer (‘Slider’ condition). We found that despite changes in sensitivity to different forces, overall sensory attenuation did not differ between medicated PD patients and controls. Importantly, the degree of attenuation was negatively related to PD motor severity but positively related to individual patient dopamine dose, as measured by levodopa dose equivalent. The results suggest that dopamine could regulate the integration of sensorimotor prediction with sensory information to facilitate the control of voluntary movements.

Collaboration


Dive into the Noham Wolpe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiaxiang Zhang

Cognition and Brain Sciences Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Haggard

University College London

View shared research outputs
Top Co-Authors

Avatar

Charlotte L. Rae

Cognition and Brain Sciences Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge