Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. Pirruccello is active.

Publication


Featured researches published by James P. Pirruccello.


Nature | 2010

From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus

Kiran Musunuru; Alanna Strong; Maria Frank-Kamenetsky; Noemi E. Lee; Tim Ahfeldt; Katherine V. Sachs; Xiaoyu Li; Hui Li; Nicolas Kuperwasser; Vera M. Ruda; James P. Pirruccello; Brian Muchmore; Ludmila Prokunina-Olsson; Jennifer L. Hall; Eric E. Schadt; Carlos R. Morales; Sissel Lund-Katz; Michael C. Phillips; Jamie Wong; William Cantley; Timothy Racie; Kenechi G. Ejebe; Marju Orho-Melander; Olle Melander; Victor Koteliansky; Kevin Fitzgerald; Ronald M. Krauss; Chad A. Cowan; Sekar Kathiresan; Daniel J. Rader

Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.


Circulation-cardiovascular Genetics | 2010

Candidate gene association resource (CARe): design, methods, and proof of concept.

Kiran Musunuru; Guillaume Lettre; Taylor Young; Deborah N. Farlow; James P. Pirruccello; Kenechi G. Ejebe; Brendan J. Keating; Qiong Yang; Ming-Huei Chen; Nina Lapchyk; Andrew Crenshaw; Liuda Ziaugra; Anthony Rachupka; Emelia J. Benjamin; L. Adrienne Cupples; Myriam Fornage; Ervin R. Fox; Susan R. Heckbert; Joel N. Hirschhorn; Christopher Newton-Cheh; Marcia M. Nizzari; Dina N. Paltoo; George J. Papanicolaou; Sanjay R. Patel; Bruce M. Psaty; Daniel J. Rader; Susan Redline; Stephen S. Rich; Jerome I. Rotter; Herman A. Taylor

Background— The National Heart, Lung, and Blood Institutes Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results— CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP , LIPC , and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions— The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.Background—The National Heart, Lung, and Blood Institute’s Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results—CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP, LIPC, and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions—The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.


European Heart Journal | 2012

Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia

Mohammad Mahdi Motazacker; James P. Pirruccello; Roeland Huijgen; Ron Do; Stacey Gabriel; Jorge Peter; Jan Albert Kuivenhoven; Joep C. Defesche; John J. P. Kastelein; G. Kees Hovingh; Noam Zelcer; Sekar Kathiresan; Sigrid W. Fouchier

Aims Autosomal dominant hypercholesterolaemia (ADH) is a major risk factor for coronary artery disease. This disorder is caused by mutations in the genes coding for the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9). However, in 41% of the cases, we cannot find mutations in these genes. In this study, new genetic approaches were used for the identification and validation of new variants that cause ADH. Methods and results Using exome sequencing, we unexpectedly identified a novel APOB mutation, p.R3059C, in a small-sized ADH family. Since this mutation was located outside the regularly screened APOB region, we extended our routine sequencing strategy and identified another novel APOB mutation (p.K3394N) in a second family. In vitro analyses show that both mutations attenuate binding to the LDLR significantly. Despite this, both mutations were not always associated with ADH in both families, which prompted us to validate causality through using a novel genetic approach. Conclusion This study shows that advances in genetics help increasing our understanding of the causes of ADH. We identified two novel functional APOB mutations located outside the routinely analysed APOB region, suggesting that screening for mutations causing ADH should encompass the entire APOB coding sequence involved in LDL binding to help identifying and treating patients at increased cardiovascular risk.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

A Novel APOB Mutation Identified by Exome Sequencing Cosegregates With Steatosis, Liver Cancer, and Hypocholesterolemia

Angelo B. Cefalù; James P. Pirruccello; Davide Noto; Stacey Gabriel; Vincenza Valenti; Namrata Gupta; Rossella Spina; Patrizia Tarugi; Sekar Kathiresan; Maurizio Averna

Objective—In familial hypobetalipoproteinemia, fatty liver is a characteristic feature, and there are several reports of associated cirrhosis and hepatocarcinoma. We investigated a large kindred in which low-density lipoprotein cholesterol, fatty liver, and hepatocarcinoma displayed an autosomal dominant pattern of inheritance. Approach and Results—The proband was a 25-year-old female with low plasma cholesterol and hepatic steatosis. Low plasma levels of total cholesterol and fatty liver were observed in 10 more family members; 1 member was affected by liver cirrhosis, and 4 more subjects died of either hepatocarcinoma or carcinoma on cirrhosis. To identify the causal mutation in this family, we performed exome sequencing in 2 participants with hypocholesterolemia and fatty liver. Approximately 22 400 single nucleotide variants were identified in each sample. After variant filtering, 300 novel shared variants remained. A nonsense variant, p.K2240X, attributable to an A>T mutation in exon 26 of APOB (c.6718A>T) was identified, and this variant was confirmed by Sanger sequencing. The gentotypic analysis of 16 family members in total showed that this mutation segregated with the low cholesterol trait. In addition, genotyping of the PNPLA3 p.I148M did not show significant frequency differences between carriers and noncarriers of the c.6718A>T APOB gene mutation. Conclusions—We used exome sequencing to discover a novel nonsense mutation in exon 26 of APOB (p.K2240X) responsible for low cholesterol and fatty liver in a large kindred. This mutation may also be responsible for cirrhosis and liver cancer in this family.


Current Opinion in Cardiology | 2010

Genetics of lipid disorders

James P. Pirruccello; Sekar Kathiresan

Purpose of review In this review, we will highlight recent advances in identifying genes and gene regions responsible for the variation in serum lipid levels. We will also consider the next directions for research based on these advances. Recent findings Large-scale genome-wide association studies have successfully screened common variants across the genome for association with serum lipids and have generated novel hypotheses about the causes of serum lipid variation. Summary Deep sequencing of genome-wide association signals promises to expand the catalogue of variants responsible for serum lipid variation and, with a full catalogue of variants, we may develop a panel of polymorphisms with clinical utility. In parallel, functional exploration of the genome-wide association signals should expand our knowledge of lipoprotein metabolism and generate targets for pharmacologic intervention.


Atherosclerosis | 2018

Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol

Yu-Xin Xu; Valeska Redon; Haojie Yu; William Querbes; James P. Pirruccello; Abigail Liebow; Amy Deik; Kevin Trindade; Wang Xf; Kiran Musunuru; Clary B. Clish; Chad A. Cowan; Kevin Fizgerald; Daniel J. Rader; Sekar Kathiresan

BACKGROUND AND AIMS Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C. METHODS We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system. RESULTS RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1-/- carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake. CONCLUSIONS Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency.


Circulation-cardiovascular Genetics | 2010

Candidate Gene Association Resource (CARe)

Kiran Musunuru; Guillaume Lettre; Taylor Young; Deborah N. Farlow; James P. Pirruccello; Kenechi G. Ejebe; Brendan J. Keating; Qiong Yang; Ming-Huei Chen; Nina Lapchyk; Andrew Crenshaw; Liuda Ziaugra; Anthony Rachupka; Emelia J. Benjamin; L. Adrienne Cupples; Myriam Fornage; Ervin R. Fox; Susan R. Heckbert; Joel N. Hirschhorn; Christopher Newton-Cheh; Marcia M. Nizzari; Dina N. Paltoo; George J. Papanicolaou; Sanjay R. Patel; Bruce M. Psaty; Daniel J. Rader; Susan Redline; Stephen S. Rich; Jerome I. Rotter; Herman A. Taylor

Background— The National Heart, Lung, and Blood Institutes Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results— CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP , LIPC , and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions— The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.Background—The National Heart, Lung, and Blood Institute’s Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results—CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP, LIPC, and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions—The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.


Coronary Artery Disease | 2017

An electronic cardiac rehabilitation referral system increases cardiac rehabilitation referrals

James P. Pirruccello; Kathleen C Traynor; Pradeep Natarajan; Carol Brown; Michael K. Hidrue; Kenneth Rosenfield; Sekar Kathiresan; Jason H. Wasfy

Aim Although cardiac rehabilitation attendance is associated with improved clinical outcomes for patients after acute myocardial infarction (AMI), it remains underutilized nationally. We sought to determine whether replacing traditional, paper-based referrals for cardiac rehabilitation for patients with AMI with an electronic referral system would increase utilization. Methods and results We implemented the change from traditional, paper-based referrals to electronic referrals at the Massachusetts General Hospital on 10 December 2013. Using a segmented regression approach to control for other secular effects, we assessed an association between the intervention and inpatient referrals, total referrals, cardiac rehabilitation attendance at Massachusetts General Hospital, and the rate of inpatient referral to cardiac rehabilitation after AMI. We analyzed 1895 referral records over a 30-month period. After the intervention, the total referrals to our cardiac rehabilitation program increased by a factor of 1.8, largely attributable to a 17-fold increase in inpatient referrals (P<0.0001 for both). Conclusion Even relative to pre-existing secular trends, switching to an electronic referral system was associated with an increase in referral volume for cardiac rehabilitation for patients with AMI. Electronic care innovations may improve the ability of provider organizations to provide guideline-oriented care for patients with coronary artery disease.


Journal of the American Heart Association | 2017

“Road Map” to Improving Enrollment in Cardiac Rehabilitation: Identifying Barriers and Evaluating Alternatives

James P. Pirruccello; Kathleen C Traynor; Krishna G. Aragam

Comprehensive cardiac rehabilitation (CR) is a multifaceted intervention associated with reductions in cardiovascular morbidity and mortality after acute myocardial infarction, percutaneous coronary intervention, and coronary artery bypass grafting.[1][1], [2][2], [3][3] The association of CR with


Circulation-cardiovascular Genetics | 2010

Candidate Gene Association Resource (CARe)Clinical Perspective: Design, Methods, and Proof of Concept

Kiran Musunuru; Guillaume Lettre; Taylor Young; Deborah N. Farlow; James P. Pirruccello; Kenechi G. Ejebe; Brendan J. Keating; Qiong Yang; Ming-Huei Chen; Nina Lapchyk; Andrew Crenshaw; Liuda Ziaugra; Anthony Rachupka; Emelia J. Benjamin; L. Adrienne Cupples; Myriam Fornage; Ervin R. Fox; Susan R. Heckbert; Joel N. Hirschhorn; Christopher Newton-Cheh; Marcia M. Nizzari; Dina N. Paltoo; George J. Papanicolaou; Sanjay R. Patel; Bruce M. Psaty; Daniel J. Rader; Susan Redline; Stephen S. Rich; Jerome I. Rotter; Herman A. Taylor

Background— The National Heart, Lung, and Blood Institutes Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results— CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP , LIPC , and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions— The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.Background—The National Heart, Lung, and Blood Institute’s Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results—CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP, LIPC, and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions—The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.

Collaboration


Dive into the James P. Pirruccello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Rader

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kiran Musunuru

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. Psaty

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dina N. Paltoo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ervin R. Fox

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge