Jamil Kanaani
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jamil Kanaani.
Journal of Neurochemistry | 2005
Jamil Kanaani; Stanley B. Prusiner; Julia M. Diacovo; Steinunn Baekkeskov; Giuseppe Legname
While a β‐sheet‐rich form of the prion protein (PrPSc) causes neurodegeneration, the biological activity of its precursor, the cellular prion protein (PrPC), has been elusive. We have studied the effect of purified recombinant prion protein (recPrP) on rat fetal hippocampal neurons in culture. Overnight exposure to Syrian hamster or mouse recPrP, folded into an α‐helical‐rich conformation similar to that of PrPC, resulted in a 1.9‐fold increase in neurons with a differentiated axon, a 13.5‐fold increase in neurons with differentiated dendrites, a fivefold increase in axon length, and the formation of extensive neuronal circuitry. Formation of synaptic‐like contacts was increased by a factor of 4.6 after exposure to recPrP for 7 days. Neither the N‐terminal nor C‐terminal domains of recPrP nor the PrP paralogue doppel (Dpl) enhanced the polarization of neurons. Inhibitors of protein kinase C (PKC) and of Src kinases, including p59Fyn, blocked the effect of recPrP on axon elongation, while inhibitors of phosphatidylinositol 3‐kinase showed a partial inhibition, suggesting that signaling cascades involving these kinases are candidates for transduction of recPrP‐mediated signals. The results predict that full‐length PrPC functions as a growth factor involved in development of neuronal polarity.
Molecular Membrane Biology | 2009
Steinunn Baekkeskov; Jamil Kanaani
The efficacy and success of many cellular processes is dependent on a tight orchestration of proteins trafficking to and from their site(s) of action in a time-controlled fashion. Recently, a dynamic cycle of palmitoylation/de-palmitoylation has been shown to regulate shuttling of several proteins, including the small GTPases H-Ras and N-Ras, and the GABA-synthesizing enzyme GAD65, between the Golgi compartment and either the plasma membrane or synaptic vesicle membranes. These proteins are peripheral membrane proteins that in the depalmitoylated state cycle rapidly on and off the cytosolic face of ER/Golgi membranes. Palmitoylation of one or more cysteines, by a Golgi localized palmitoyl transferase (PAT) results in trapping in Golgi membranes, and sorting to a vesicular pathway in route to the plasma membrane or synaptic vesicles. A depalmitoylation step by an acyl protein thioesterase (APT) releases the protein from membranes in the periphery of the cell resulting in retrograde trafficking back to Golgi membranes by a non-vesicular pathway. The proteins can then enter a new cycle of palmitoylation and depalmitoylation. This inter-compartmental trafficking is orders of magnitude faster than vesicular trafficking. Recent advances in identifying a large family of PATs, their protein substrates, and single PAT mutants with severe phenotypes, reveal their critical importance in development, synaptic transmission, and regulation of signaling cascades. The emerging knowledge of enzymes involved in adding and removing palmitate is that they provide an intricate regulatory network involved in timing of protein function and transport that responds to intracellular and extracellular signals.
Journal of Biological Chemistry | 1997
Mark Namchuk; LeAnn Lindsay; Christoph W. Turck; Jamil Kanaani; Steinunn Baekkeskov
GAD65, the smaller isoform of the γ-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase is detected as an α/β doublet of distinct mobility on SDS-polyacrylamide gel electrophoresis. Glutamic acid decarboxylase (GAD) 65 is reversibly anchored to the membrane of synaptic vesicles in neurons and synaptic-like microvesicles in pancreatic β-cells. Here we demonstrate that GAD65α but not β is phosphorylated in vivo and in vitro in several cell types. Phosphorylation is not the cause of the α/β heterogeneity but represents a unique post-translational modification of GAD65α. Two-dimensional protein analyses identified five phosphorylated species of three different charges, which are likely to represent mono-, di-, and triphosphorylated GAD65α in different combinations of phosphorylated serines. Phosphorylation of GAD65α was located at serine residues 3, 6, 10, and 13, shown to be mediated by a membrane bound kinase, and distinguish the membrane anchored, and soluble forms of the enzyme. Phosphorylation status does not affect membrane anchoring of GAD65, nor its Km or Vmax for glutamate. The results are consistent with a model in which GAD65α and -β constitute the two subunits of the native GAD65 dimer, only one of which, α, undergoes phosphorylation following membrane anchoring, perhaps to regulate specific aspects of GAD65 function in the synaptic vesicle membrane.
Journal of Cell Biology | 2002
Jamil Kanaani; Alaa El-Husseini; Andrea Aguilera-Moreno; Julia M. Diacovo; David S. Bredt; Steinunn Baekkeskov
The signals involved in axonal trafficking and presynaptic clustering are poorly defined. Here we show that targeting of the γ-aminobutyric acid–synthesizing enzyme glutamate decarboxylase 65 (GAD65) to presynaptic clusters is mediated by its palmitoylated 60-aa NH2-terminal domain and that this region can target other soluble proteins and their associated partners to presynaptic termini. A Golgi localization signal in aa 1–23 followed by a membrane anchoring signal upstream of the palmitoylation motif are required for this process and mediate targeting of GAD65 to the cytosolic leaflet of Golgi membranes, an obligatory first step in axonal sorting. Palmitoylation of a third trafficking signal downstream of the membrane anchoring signal is not required for Golgi targeting. However, palmitoylation of cysteines 30 and 45 is critical for post-Golgi trafficking of GAD65 to presynaptic sites and for its relative dendritic exclusion. Reduction of cellular cholesterol levels resulted in the inhibition of presynaptic clustering of palmitoylated GAD65, suggesting that the selective targeting of the protein to presynaptic termini is dependent on sorting to cholesterol-rich membrane microdomains. The palmitoylated NH2-terminal region of GAD65 is the first identified protein region that can target other proteins to presynaptic clusters.
Journal of Cell Science | 2004
Jamil Kanaani; Maria Julia Diacovo; Alaa El-Husseini; David S. Bredt; Steinunn Baekkeskov
The GABA-synthesizing enzyme GAD65 is synthesized as a soluble cytosolic protein but undergoes post-translational modification(s) to become anchored to the cytosolic face of Golgi membranes before targeting to synaptic vesicle membranes in neuroendocrine cells. Palmitoylation of cysteines 30 and 45 in GAD65 is not required for targeting to Golgi membranes but is crucial for post-Golgi trafficking to presynaptic clusters in neurons. Here, we show that palmitoylated GAD65 colocalizes with the small GTP-binding protein Rab5a in Golgi membranes and in axons but not in dendrites. In the presence of the constitutively positive mutant Rab5(Q79L) palmitoylation resulted in polarized targeting of GAD65 to giant Rab5a-positive axonal endosomes, characterized by the absence of the Rab5a-effector molecule EEA1 and the transferrin receptor. By contrast, Rab5a-positive/EEA1-positive somatodendritic giant endosomes containing the transferrin receptor were devoid of GAD65. Palmitoylation-deficient GAD65 was excluded from endosomal compartments. A dominant negative mutant of Rab5a, Rab5a(S34N), specifically blocked axonal trafficking and presynaptic clustering of palmitoylated GAD65, but did not affect axonal trafficking of mutants of GAD65 that fail to traffic to giant axonal endosomes containing Rab5a(Q79L). Two transmembrane synaptic vesicle proteins, VAMP2 and VGAT also localized to the axonal giant endosomes, and their axonal trafficking and presynaptic clustering was blocked by Rab5a(S34N). The results suggest that palmitoylation of GAD65 regulates the trafficking of the protein from Golgi membranes to an endosomal trafficking pathway in axons that is dependent on Rab5a and is required for the targeting of several synaptic vesicle proteins to presynaptic clusters.
Journal of Biological Chemistry | 1999
Jamil Kanaani; Dmitri V. Lissin; Shera F. Kash; Steinunn Baekkeskov
GAD67, the larger isoform of the γ-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase, is a hydrophilic soluble molecule, postulated to localize at nerve terminals and membrane compartments by heterodimerization with the smaller membrane-anchored isoform GAD65. We here show that the dimerization region in GAD65 is distinct from the NH2-terminal membrane-anchoring region and that a membrane anchoring GAD65 subunit can indeed target a soluble subunit to membrane compartments by dimerization. However, only a fraction of membrane-bound GAD67 is engaged in a heterodimer with GAD65 in rat brain. Furthermore, in GAD65−/− mouse brain, GAD67, which no longer partitions into the Triton X-114 detergent phase, still anchors to membranes at similar levels as in wild-type mice. Similarly, in primary cultures of neurons derived from GAD65−/− mice, GAD67 is targeted to nerve terminals, where it co-localizes with the synaptic vesicle marker SV2. Thus, axonal targeting and membrane anchoring is an intrinsic property of GAD67 and does not require GAD65. The results suggest that three distinct moieties of glutamate decarboxylase localize to membrane compartments, an amphiphilic GAD65 homodimer, an amphiphilic GAD65/67 heterodimer, tethered to membranes via the GAD65 subunit, and a hydrophilic GAD67 homodimer, which associates with membranes by a distinct mechanism.
Journal of Cell Science | 2008
Jamil Kanaani; George H. Patterson; Fred Schaufele; Jennifer Lippincott-Schwartz; Steinunn Baekkeskov
GAD65, the smaller isoform of the enzyme glutamic acid decarboxylase, synthesizes GABA for fine-tuning of inhibitory neurotransmission. GAD65 is synthesized as a soluble hydrophilic protein but undergoes a hydrophobic post-translational modification and becomes anchored to the cytosolic face of Golgi membranes. A second hydrophobic modification, palmitoylation of Cys30 and Cys45 in GAD65, is not required for the initial membrane anchoring but is crucial for post-Golgi trafficking of the protein to presynaptic clusters. The mechanism by which palmitoylation directs targeting of GAD65 through and out of the Golgi complex is unknown. Here, we show that prior to palmitoylation, GAD65 anchors to both ER and Golgi membranes. Palmitoylation, however, clears GAD65 from the ER-Golgi, targets it to the trans-Golgi network and then to a post-Golgi vesicular pathway. FRAP analyses of trafficking of GAD65-GFP reveal a rapid and a slow pool of protein replenishing the Golgi complex. The rapid pool represents non-palmitoylated hydrophobic GAD65-GFP, which exchanges rapidly between the cytosol and ER/Golgi membranes. The slow pool represents palmitoylation-competent GAD65-GFP, which replenishes the Golgi complex via a non-vesicular pathway and at a rate consistent with a depalmitoylation step. We propose that a depalmitoylation-repalmitoylation cycle serves to cycle GAD65 between Golgi and post-Golgi membranes and dynamically control levels of enzyme directed to the synapse.
Journal of Cell Biology | 2010
Jamil Kanaani; Julia Kolibachuk; Hugo Martinez; Steinunn Baekkeskov
Accumulation of the GABA inhibitory neurotransmitter for rapid delivery into synapses can be accomplished by GAD65 dependent and independent membrane-targeting of GAD67.
Diabetes | 2016
Edward A. Phelps; Chiara Cianciaruso; Iacovos P. Michael; Miriella Pasquier; Jamil Kanaani; Rita Nano; Vanessa Lavallard; Nils Billestrup; Jeffrey A. Hubbell; Steinunn Baekkeskov
Pancreatic islet β-cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in β-cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes γ-aminobutyric acid, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary β-cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes. The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen-presenting cells and T-cell stimulation compared with the nonpalmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human β-cells in pancreatic sections from GAD65 autoantibody-positive individuals who have not yet progressed to clinical onset of T1D and from patients with T1D with residual β-cell mass and ongoing T-cell infiltration of islets. We propose that aberrant accumulation of immunogenic GAD65 in Golgi membranes facilitates inappropriate presentation to the immune system after release from stressed and/or damaged β-cells, triggering autoimmunity.
PLOS ONE | 2015
Jamil Kanaani; Chiara Cianciaruso; Edward A. Phelps; Miriella Pasquier; Estelle Brioudes; Nils Billestrup; Steinunn Baekkeskov
The inhibitory neurotransmitter GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD) in neurons and in pancreatic β-cells in islets of Langerhans where it functions as a paracrine and autocrine signaling molecule regulating the function of islet endocrine cells. The localization of the two non-allelic isoforms GAD65 and GAD67 to vesicular membranes is important for rapid delivery and accumulation of GABA for regulated secretion. While the membrane anchoring and trafficking of GAD65 are mediated by intrinsic hydrophobic modifications, GAD67 remains hydrophilic, and yet is targeted to vesicular membrane pathways and synaptic clusters in neurons by both a GAD65-dependent and a distinct GAD65-independent mechanism. Herein we have investigated the membrane association and targeting of GAD67 and GAD65 in monolayer cultures of primary rat, human, and mouse islets and in insulinoma cells. GAD65 is primarily detected in Golgi membranes and in peripheral vesicles distinct from insulin vesicles in β-cells. In the absence of GAD65, GAD67 is in contrast primarily cytosolic in β-cells; its co-expression with GAD65 is necessary for targeting to Golgi membranes and vesicular compartments. Thus, the GAD65-independent mechanism for targeting of GAD67 to synaptic vesicles in neurons is not functional in islet β-cells. Therefore, only GAD65:GAD65 homodimers and GAD67:GAD65 heterodimers, but not the GAD67:GAD67 homodimer gain access to vesicular compartments in β-cells to facilitate rapid accumulation of newly synthesized GABA for regulated secretion and fine tuning of GABA-signaling in islets of Langerhans.