Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamshid Arjomand is active.

Publication


Featured researches published by Jamshid Arjomand.


Cell Stem Cell | 2012

Induced Pluripotent Stem Cells from Patients with Huntington’s Disease : Show CAG Repeat-Expansion-Associated Phenotypes

Virginia B. Mattis; Soshana Svendsen; Allison D. Ebert; Clive N. Svendsen; Alvin R. King; Malcolm Casale; Sara T. Winokur; Gayani Batugedara; Marquis P. Vawter; Peter J. Donovan; Leslie F. Lock; Leslie M. Thompson; Yu Zhu; Elisa Fossale; Ranjit S. Atwal; Tammy Gillis; Jayalakshmi S. Mysore; Jian Hong Li; Ihn Sik Seong; Yiping Shen; Xiaoli Chen; Vanessa C. Wheeler; Marcy E. MacDonald; James F. Gusella; Sergey Akimov; Nicolas Arbez; Tarja Juopperi; Tamara Ratovitski; Jason H. Chiang; Woon Roung Kim

Huntingtons disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.


PLOS ONE | 2014

A Monoclonal Antibody TrkB Receptor Agonist as a Potential Therapeutic for Huntington’s Disease

D. Todd; Ian Gowers; Simon J. Dowler; Michael D. Wall; George McAllister; David F. Fischer; Sipke Dijkstra; Silvina A. Fratantoni; Rhea van de Bospoort; Geraldine Flynn; Jamshid Arjomand; Celia Dominguez; Ignacio Munoz-Sanjuan; John Wityak; Jonathan Bard

Huntington’s disease (HD) is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is severely dysfunctional as reflected by striatal and cortical atrophy in late-stage disease. Brain-derived neurotrophic factor (BDNF) is a neuroprotective, secreted protein that binds with high affinity to the extracellular domain of the tropomyosin-receptor kinase B (TrkB) receptor promoting neuronal cell survival by activating the receptor and down-stream signaling proteins. Reduced cortical BDNF production and transport to the striatum have been implicated in HD pathogenesis; the ability to enhance TrkB signaling using a BDNF mimetic might be beneficial in disease progression, so we explored this as a therapeutic strategy for HD. Using recombinant and native assay formats, we report here the evaluation of TrkB antibodies and a panel of reported small molecule TrkB agonists, and identify the best candidate, from those tested, for in vivo proof of concept studies in transgenic HD models.


Journal of Neuropathology and Experimental Neurology | 2015

Abnormalities in the Tricarboxylic Acid Cycle in Huntington Disease and in a Huntington Disease Mouse Model

Nima N. Naseri; Hui Xu; Joseph Bonica; Jean Paul Vonsattel; Etty Cortes; Larry Park; Jamshid Arjomand; Gary E. Gibson

Abstract Glucose metabolism is reduced in the brains of patients with Huntington disease (HD). The mechanisms underlying this deficit, its link to the pathology of the disease, and the vulnerability of the striatum in HD remain unknown. Abnormalities in some of the key mitochondrial enzymes involved in glucose metabolism, including the pyruvate dehydrogenase complex (PDHC) and the tricarboxylic acid (TCA) cycle, may contribute to these deficits. Here, activities for these enzymes and select protein levels were measured in human postmortem cortex and in striatum and cortex of an HD mouse model (Q175); mRNA levels encoding for these enzymes were also measured in the Q175 mouse cortex. The activities of PDHC and nearly all of the TCA cycle enzymes were dramatically lower (−50% to 90%) in humans than in mice. The activity of succinate dehydrogenase increased with HD in human (35%) and mouse (23%) cortex. No other changes were detected in the human HD cortex or mouse striatum. In Q175 cortex, there were increased activities of PDHC (+12%) and aconitase (+32%). Increased mRNA levels for succinyl thiokinase (+88%) and isocitrate dehydrogenase (+64%) suggested an upregulation of the TCA cycle. These patterns of change differ from those reported in other diseases, which may offer unique metabolic therapeutic opportunities for HD patients.


Journal of Biomolecular Screening | 2014

Advances in huntington disease drug discovery: novel approaches to model disease phenotypes.

Jonathan Bard; Michael D. Wall; Ovadia Lazari; Jamshid Arjomand; Ignacio Munoz-Sanjuan

Huntington disease is a monogenic, autosomal dominant, progressive neurodegenerative disorder caused by a trinucleotide CAG repeat expansion in exon 1 of the huntingtin (HTT) gene; age of onset of clinical symptoms inversely correlates with expanded CAG repeat length. HD leads to extensive degeneration of the basal ganglia, hypothalamic nuclei, and selected cortical areas, and a wide range of molecular mechanisms have been implicated in disease pathology in animal or cellular models expressing mutated HTT (mHTT) proteins, either full-length or amino-terminal fragments. However, HD cellular models that recapitulate the slow progression of the disease have not been available due to the toxicity of overexpressed exogenous mHTT or to limitations with using primary cells for long-term studies. Most investigations of the effects of mHTT relied on cytotoxicity or aggregation end points in heterologous systems or in primary embryonic neuroglial cultures derived from HD mouse models. More innovative approaches are currently under active investigation, including screening using electrophysiological endpoints, as well as the recent use of primary blood mononuclear cells and of human embryonic stem cells derived from a variety of HD research participants. Here we describe how these cellular systems are being used to investigate HD biology as well as to identify mechanisms with therapeutic potential.


PLOS ONE | 2016

Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington's Disease Patients.

Nima N. Naseri; Joseph Bonica; Hui Xu; Larry Park; Jamshid Arjomand; Zhengming Chen; Gary E. Gibson

Metabolic dysfunction is well-documented in Huntington’s disease (HD). However, the link between the mutant huntingtin (mHTT) gene and the pathology is unknown. The tricarboxylic acid (TCA) cycle is the main metabolic pathway for the production of NADH for conversion to ATP via the electron transport chain (ETC). The objective of this study was to test for differences in enzyme activities, mRNAs and protein levels related to the TCA cycle between lymphoblasts from healthy subjects and from patients with HD. The experiments utilize the advantages of lymphoblasts to reveal new insights about HD. The large quantity of homogeneous cell populations permits multiple dynamic measures to be made on exactly comparable tissues. The activities of nine enzymes related to the TCA cycle and the expression of twenty-nine mRNAs encoding for these enzymes and enzyme complexes were measured. Cells were studied under baseline conditions and during metabolic stress. The results support our recent findings that the activities of the pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase (SDH) are elevated in HD. The data also show a large unexpected depression in MDH activities. Furthermore, message levels for isocitrate dehydrogenase 1 (IDH1) were markedly increased in in HD lymphoblasts and were responsive to treatments. The use of lymphoblasts allowed us to clarify that the reported decrease in aconitase activity in HD autopsy brains is likely due to secondary hypoxic effects. These results demonstrate the mRNA and enzymes of the TCA cycle are critical therapeutic targets that have been understudied in HD.


Molecular therapy. Methods & clinical development | 2015

Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell-derived medium spiny neurons.

Marco Straccia; Gerardo García-Díaz Barriga; Phil Sanders; Georgina Bombau; Jordi Carrere; Pedro Belio Mairal; Ngoc-Nga Vinh; Sun Yung; Claire Kelly; Clive N. Svendsen; Paul J. Kemp; Jamshid Arjomand; Ryan C. Schoenfeld; Jordi Alberch; Nicholas Denby Allen; Anne Elizabeth Rosser; Josep M. Canals

A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.


PLOS ONE | 2015

HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

Jeffrey B. Carroll; Amy Deik; Elisa Fossale; Rory Weston; Jolene R. Guide; Jamshid Arjomand; Seung Kwak; Clary B. Clish; Marcy E. MacDonald

The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident in brain, where the striatum featured signature accumulation of a set of lipids including sphingomyelin, phosphatidylcholine, cholesterol ester and triglyceride species. Importantly, in the presence of the CAG mutation, metabolite changes were unmasked in peripheral tissues by an interaction with dietary fat, implying that the design of studies to discover metabolic changes in HD mutation carriers should include metabolic perturbations.


European Journal of Human Genetics | 2017

Haplotype-based stratification of Huntington's disease

Michael J. Chao; Tammy Gillis; Ranjit S. Atwal; Jayalakshmi S. Mysore; Jamshid Arjomand; Denise Harold; Peter Holmans; Lesley Jones; Michael Orth; Richard H. Myers; Seung Kwak; Vanessa C. Wheeler; Marcy E. MacDonald; James F. Gusella; Jong-Min Lee

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat in HTT, resulting in an extended polyglutamine tract in huntingtin. We and others have previously determined that the HD-causing expansion occurs on multiple different haplotype backbones, reflecting more than one ancestral origin of the same type of mutation. In view of the therapeutic potential of mutant allele-specific gene silencing, we have compared and integrated two major systems of HTT haplotype definition, combining data from 74 sequence variants to identify the most frequent disease-associated and control chromosome backbones and revealing that there is potential for additional resolution of HD haplotypes. We have used the large collection of 4078 heterozygous HD subjects analyzed in our recent genome-wide association study of HD age at onset to estimate the frequency of these haplotypes in European subjects, finding that common genetic variation at HTT can distinguish the normal and CAG-expanded chromosomes for more than 95% of European HD individuals. As a resource for the HD research community, we have also determined the haplotypes present in a series of publicly available HD subject-derived fibroblasts, induced pluripotent cells, and embryonic stem cells in order to facilitate efforts to develop inclusive methods of allele-specific HTT silencing applicable to most HD patients. Our data providing genetic guidance for therapeutic gene-based targeting will significantly contribute to the developments of rational treatments and implementation of precision medicine in HD.


Journal of Neurology, Neurosurgery, and Psychiatry | 2012

A11 Induced pluripotent stem cells for basic and translational research on HD

Virginia B. Mattis; Soshana Svendsen; Allison D. Ebert; Clive N. Svendsen; Ar King; Malcolm Casale; Sara T. Winokur; G Batugedara; Marquis P. Vawter; Peter J. Donovan; Leslie F. Lock; Leslie M. Thompson; Y Zhu; Elisa Fossale; Ranjit S. Atwal; Tammy Gillis; Jayalakshmi S. Mysore; J-h Li; Ihn Sik Seong; Yiping Shen; X Chen; Vanessa C. Wheeler; Marcy E. MacDonald; James F. Gusella; S Akimov; Nicolas Arbez; T Juopperi; Tamara Ratovitski; Jh Chiang; Wr Kim

Background The expression of mutant HTT leads to many cellular alterations, including abnormal vesicle recycling, loss of signalling by brain-derived neurotrophic factor, excitotoxicity, perturbation of Ca2+ signalling, decreases in intracellular ATP, alterations of gene transcription, inhibition of protein clearance pathways, mitochondrial and metabolic disturbances, and ultimately cell death. While robust mammalian systems have been developed to model disease and extensive mechanistic insights have emerged, significant differences between rodent and human cells and between non-neuronal cells and neurons limit the utility of these models for accurately representing human disease. Human pluripotent stem cells can generate highly specified cell populations, including DARPP32-positive MSNs of the striatum, and provide a method for modelling HD in human neurons carrying the mutation. As it is caused by one single gene, HD is an ideal disorder for exploring the utility of modelling disease in induced pluripotent stem cells (iPSCs) through reprogramming adult cells from HD patients with known patterns of disease onset and duration. Aims Generate iPSC lines from HD patients and controls and identify CAG-repeat expansion associated phenotypes. Methods/techniques Through the efforts of an international consortium effort, 14 lines were generated, differentiated into neuronal populations and assessed for CAG-repeat dependent outcome measures. Results/outcomes HD iPSC lines have reproducible CAG expansion–associated phenotypes upon differentiation, including CAG expansion-associated changes in gene expression patterns and alterations in electrophysiology, metabolism, cell adhesion, and ultimately an increased risk of cell death. While the lines with the longest repeats (HD180) showed a phenotype across all assays, those with shorter repeats (HD60) showed phenotypes in a specific sub set of assays. The most sensitive assay for establishing repeat dependent effects was found to be calcium responses to stress. Conclusions This HD iPSC collection represents a unique and well-characterised resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics. Funding NIH, CHDI, CIRM.


Human Molecular Genetics | 2015

HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity

Virginia B. Mattis; Colton M. Tom; Sergey S. Akimov; Jasmine Saeedian; Michael E. Østergaard; Amber L. Southwell; Crystal N. Doty; Loren Ornelas; Anais Sahabian; Lindsay Lenaeus; Berhan Mandefro; Dhruv Sareen; Jamshid Arjomand; Michael R. Hayden; Christopher A. Ross; Clive N. Svendsen

Collaboration


Dive into the Jamshid Arjomand's collaboration.

Top Co-Authors

Avatar

Clive N. Svendsen

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Virginia B. Mattis

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge