Jan Cvecka
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Cvecka.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015
Sandra Zampieri; Laura Pietrangelo; Stefan Loefler; Hannah Fruhmann; Michael Vogelauer; Samantha Burggraf; Amber Pond; M. Grim-Stieger; Jan Cvecka; Milan Sedliak; Veronika Tirpakova; Winfried Mayr; Nejc Sarabon; Katia Rossini; Laura Barberi; M. De Rossi; Vanina Romanello; Simona Boncompagni; Antonio Musarò; Marco Sandri; Feliciano Protasi; Ugo Carraro; Helmut Kern
Aging is usually accompanied by a significant reduction in muscle mass and force. To determine the relative contribution of inactivity and aging per se to this decay, we compared muscle function and structure in (a) male participants belonging to a group of well-trained seniors (average of 70 years) who exercised regularly in their previous 30 years and (b) age-matched healthy sedentary seniors with (c) active young men (average of 27 years). The results collected show that relative to their sedentary cohorts, muscle from senior sportsmen have: (a) greater maximal isometric force and function, (b) better preserved fiber morphology and ultrastructure of intracellular organelles involved in Ca(2+) handling and ATP production, (c) preserved muscle fibers size resulting from fiber rescue by reinnervation, and (d) lowered expression of genes related to autophagy and reactive oxygen species detoxification. All together, our results indicate that: (a) skeletal muscle of senior sportsmen is actually more similar to that of adults than to that of age-matched sedentaries and (b) signaling pathways controlling muscle mass and metabolism are differently modulated in senior sportsmen to guarantee maintenance of skeletal muscle structure, function, bioenergetic characteristics, and phenotype. Thus, regular physical activity is a good strategy to attenuate age-related general decay of muscle structure and function (ClinicalTrials.gov: NCT01679977).
Journal of Neuropathology and Experimental Neurology | 2014
Simone Mosole; Ugo Carraro; Helmut Kern; Stefan Loefler; Hannah Fruhmann; Michael Vogelauer; Samantha Burggraf; Winfried Mayr; Matthias Krenn; Tatjana Paternostro-Sluga; Dušan Hamar; Jan Cvecka; Milan Sedliak; Veronika Tirpakova; Nejc Sarabon; Antonio Musarò; Marco Sandri; Feliciano Protasi; Alessandra Nori; Amber Pond; Sandra Zampieri
The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.
Frontiers in Aging Neuroscience | 2014
Helmut Kern; Laura Barberi; Stefan Löfler; Simona Sbardella; Samantha Burggraf; Hannah Fruhmann; Ugo Carraro; Simone Mosole; Nejc Sarabon; Michael Vogelauer; Winfried Mayr; Matthias Krenn; Jan Cvecka; Vanina Romanello; Laura Pietrangelo; Feliciano Protasi; Marco Sandri; Sandra Zampieri; Antonio Musarò
The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are hallmarks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise. We addressed whether electrical stimulation (ES) is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function. We analyzed, at functional, structural, and molecular level, the effects of ES training on healthy seniors with normal life style, without routine sport activity. ES was able to improve muscle torque and functional performances of seniors and increased the size of fast muscle fibers. At molecular level, ES induced up-regulation of IGF-1 and modulation of MuRF-1, a muscle-specific atrophy-related gene. ES also induced up-regulation of relevant markers of differentiating satellite cells and of extracellular matrix remodeling, which might guarantee shape and mechanical forces of trained skeletal muscle as well as maintenance of satellite cell function, reducing fibrosis. Our data provide evidence that ES is a safe method to counteract muscle decline associated with aging.
Neurological Research | 2011
Helmut Kern; Laura Pelosi; Luisa Coletto; Antonio Musarò; Marco Sandri; Michael Vogelauer; Lukas Trimmel; Jan Cvecka; Dušan Hamar; Josef Kovarik; Stefan Löfler; Nejc Sarabon; Feliciano Protasi; Nicoletta Adami; Donatella Biral; Sandra Zampieri; Ugo Carraro
Abstract Objective: To compare the effects of isokinetic (ISO-K) and vibrational-proprioceptive (VIB) trainings on muscle mass and strength. Methods: In 29 ISO-K- or VIB-trained young athletes we evaluated: force, muscle fiber morphometry, and gene expression of muscle atrophy/hypertrophy cell signaling. Results: VIB training increased the maximal isometric unilateral leg extension force by 48·1%. ISO-K training improved the force by 24·8%. Both improvements were statistically significant (P0·01). The more functional effectiveness of the VIB training in comparison with the ISO-K training was shown by the statistical significance changes only in VIB group in: rate of force development in time segment 0-50 ms (P<0·001), squat jump (P<0·05) and 30-m acceleration running test (P<0·05). VIB training induced a highly significant increase of mean diameter of fast fiber (+9%, P<0·001), but not of slow muscle fibers (−3%, not significant). No neural cell adhesion molecule-positive (N-CAM+) and embryonic myosin heavy chain-positive (MHC-emb+) myofibers were detected. VIB induced a significant twofold increase (P<0·05) of the skeletal muscle isoform insulin-like growth factor-1 (IGF-1) Ec mRNA. Atrogin-1 and muscle ring finger-1 (MuRF-1) did not change, but myostatin was strongly downregulated after VIB training (P<0·001). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression increased in post-training groups, but only in VIB reached statistical significance (+228%, P<0·05). Discussion: We demonstrated that both trainings are effective and do not induce muscle damage. Only VIB-trained group showed statistical significance increase of hypertrophy cell signaling pathways (IGF-1Ec and PGC-1α upregulation, and myostatin downregulation) leading to hypertrophy of fast twitch muscle fibers.
European Journal of Translational Myology | 2015
Sandra Zampieri; Simone Mosole; Stefan Löfler; Hannah Fruhmann; Samantha Burggraf; Jan Cvecka; Dušan Hamar; Milan Sedliak; Veronica Tirptakova; Nejc Sarabon; Winfried Mayr; Helmut Kern
Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type) which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling). Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients’ quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP) exercise or electrical stimulation (ES). Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (p<0.001), together with a significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005). A significant decrease of slow type fiber diameter was observed in both ES and LP trained subjects (p<0.001). Altogether these results demonstrate the effectiveness of physical exercise either voluntary (LP) or passive (ES) to improve the functional performances of aging muscles. Here ES is demonstrated to be a safe home-based method to counteract fast type fiber atrophy, typically associated with aging skeletal muscle.
Physiological Reports | 2016
Sandra Zampieri; Cristina Mammucari; Vanina Romanello; Laura Barberi; Laura Pietrangelo; Aurora Fusella; Simone Mosole; Gaia Gherardi; Christian Hofer; Stefan Löfler; Nejc Sarabon; Jan Cvecka; Matthias Krenn; Ugo Carraro; Helmut Kern; Feliciano Protasi; Antonio Musarò; Marco Sandri; Rosario Rizzuto
Age‐related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU‐dependent mitochondrial Ca2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70‐year‐old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU. Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES‐trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES‐dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial‐related proteins involved in Ca2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria‐related proteins as potential pharmacological targets to counteract age‐related muscle loss.
European Journal of Translational Myology | 2015
Jan Cvecka; Veronika Tirpakova; Milan Sedliak; Helmut Kern; Winfried Mayr; Dušan Hamar
Aging is a multifactorial irreversible process associated with significant decline in muscle mass and neuromuscular functions. One of the most efficient methods to counteract age-related changes in muscle mass and function is physical exercise. An alternative effective intervention to improve muscle structure and performance is electrical stimulation. In the present work we present the positive effects of physical activity in elderly and a study where the effects of a 8-week period of functional electrical stimulation and strength training with proprioceptive stimulation in elderly are compared.
Archives of Physical Medicine and Rehabilitation | 2016
Walter Bily; Carlo Franz; Lukas Trimmel; Stefan Loefler; Jan Cvecka; Sandra Zampieri; Waltraud Kasche; Nejc Sarabon; Peter Zenz; Helmut Kern
OBJECTIVES To examine the effects of a time-saving leg-press training program with moderate vibration on strength parameters, pain, and functional outcomes of patients after total knee arthroplasty (TKA) in comparison with functional physiotherapy. DESIGN Randomized controlled trial. SETTING Outpatient rehabilitation department at a university teaching hospital. PARTICIPANTS Patients (N=55) with TKA were randomly allocated into 2 rehabilitation groups. INTERVENTIONS Six weeks after TKA, participants either underwent isokinetic leg-press training combined with moderate vibration (n=26) of 15 minutes per session or functional physiotherapy (n=29) of 30 minutes per session. Both groups received therapy twice a week for a period of 6 weeks. Participants were evaluated at baseline (6wk after TKA) and after the 6-week rehabilitation program. MAIN OUTCOME MEASURES The main outcome measure was maximal voluntary contraction (MVC) of the involved leg. Secondary outcome measures were pain assessed with a visual analog scale (VAS), range of motion, stair test, timed Up and Go test, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). RESULTS Both groups showed statistically significant improvements in MVC of knee extensors measured on the knee dynamometer (leg-press group: from 0.8±.06 to 1±.09Nm/kg body weight [BW], physiotherapy group: from 0.7±.06 to 0.9±.06Nm/kg BW; P<.05) and in closed kinetic chain on the leg press (leg-press group: from 8.9±.77 to 10.3±1.06N/kg BW, physiotherapy group: from 6.7±.54 to 9.1±.70N/kg BW; P<.05) and in pain at rest (leg-press group: from 2±.36 to 1.3±.36 on the VAS, physiotherapy group: from 1.2±.28 to 1.1±.31; P<.05), WOMAC scores, and functional measurements after 6 weeks of training. There was no significant difference between the 2 groups concerning strength, pain, and functional outcomes after training (P>.05). CONCLUSIONS Isokinetic leg-press training with moderate vibration and functional physiotherapy are both effective in regaining muscle strength and function after TKA; however, isokinetic leg-press training is considerably less time consuming.
Chronobiology International | 2018
Milan Sedliak; Michal Zeman; Gabriel Buzgó; Jan Cvecka; Dušan Hamar; Eugen Laczo; Monika Okuliarova; Marián Vanderka; T. Kampmiller; Keijo Häkkinen; Juha P. Ahtiainen; Juha J. Hulmi; Tormod S. Nilsen; Håvard Wiig; Truls Raastad
ABSTRACT It has been clearly established that maximal force and power is lower in the morning compared to noon or afternoon hours. This morning neuromuscular deficit can be diminished by regularly training in the morning hours. However, there is limited and contradictory information upon hypertrophic adaptations to time-of-day-specific resistance training. Moreover, no cellular or molecular mechanisms related to muscle hypertrophy adaptation have been studied with this respect. Therefore, the present study examined effects of the time-of-day-specific resistance training on muscle hypertrophy, phosphorylation of selected proteins, hormonal concentrations and neuromuscular performance. Twenty five previously untrained males were randomly divided into a morning group (n = 11, age 23 ± 2 yrs), afternoon group (n = 7, 24 ± 4 yrs) and control group (n = 7, 24 ± 3 yrs). Both the morning and afternoon group underwent hypertrophy-type of resistance training with 22 training sessions over an 11-week period performed between 07:30–08:30 h and 16:00–17:00 h, respectively. Isometric MVC was tested before and immediately after an acute loading exclusively during their training times before and after the training period. Before acute loadings, resting blood samples were drawn and analysed for plasma testosterone and cortisol. At each testing occasion, muscle biopsies from m. vastus lateralis were obtained before and 60 min after the acute loading. Muscle specimens were analysed for muscle fibre cross-sectional areas (CSA) and for phosphorylated p70S6K, rpS6, p38MAPK, Erk1/2, and eEF2. In addition, the right quadriceps femoris was scanned with MRI before and after the training period. The control group underwent the same testing, except for MRI, between 11:00 h and 13:00 h but did not train. Voluntary muscle strength increased significantly in both the morning and afternoon training group by 16.9% and 15.2 %, respectively. Also muscle hypertrophy occurred by 8.8% and 11.9% (MRI, p < 0.001) and at muscle fibre CSA level by 21% and 18% (p < 0.01) in the morning and afternoon group, respectively. No significant changes were found in controls within these parameters. Both pre- and post-training acute loadings induced a significant (p < 0.001) reduction in muscle strength in all groups, not affected by time of day or training. The post-loading phosphorylation of p70S6Thr421/Ser424 increased independent of the time of day in the pre-training condition, whereas it was significantly increased in the morning group only after the training period (p < 0.05). Phosphorylation of rpS6 and p38MAPK increased acutely both before and after training in a time-of-day independent manner (p < 0.05 at all occasions). Phosphorylation of p70S6Thr389, eEF2 and Erk1/2 did not change at any time point. No statistically significant correlations were found between changes in muscle fibre CSA, MRI and cell signalling data. Resting testosterone was not statistically different among groups at any time point. Resting cortisol declined significantly from pre- to post-training in all three groups (p < 0.05). In conclusion, similar levels of muscle strength and hypertrophy could be achieved regardless of time of the day in previously untrained men. However, at the level of skeletal muscle signalling, the extent of adaptation in some parameters may be time of day dependent.
Frontiers in Neurology | 2017
Patrik Krumpolec; Silvia Vallova; Lucia Slobodova; Veronika Tirpakova; Matej Vajda; Martin Schon; Radka Klepochová; Zuzana Janakova; Igor Straka; Stanislav Sutovsky; Peter Turcani; Jan Cvecka; Ladislav Valkovič; Chia Liang Tsai; Martin Krssak; Peter Valkovič; Milan Sedliak; Barbara Ukropcova; Jozef Ukropec
Regular exercise ameliorates motor symptoms in Parkinson’s disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson’s disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT02253732.