Milan Sedliak
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milan Sedliak.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015
Sandra Zampieri; Laura Pietrangelo; Stefan Loefler; Hannah Fruhmann; Michael Vogelauer; Samantha Burggraf; Amber Pond; M. Grim-Stieger; Jan Cvecka; Milan Sedliak; Veronika Tirpakova; Winfried Mayr; Nejc Sarabon; Katia Rossini; Laura Barberi; M. De Rossi; Vanina Romanello; Simona Boncompagni; Antonio Musarò; Marco Sandri; Feliciano Protasi; Ugo Carraro; Helmut Kern
Aging is usually accompanied by a significant reduction in muscle mass and force. To determine the relative contribution of inactivity and aging per se to this decay, we compared muscle function and structure in (a) male participants belonging to a group of well-trained seniors (average of 70 years) who exercised regularly in their previous 30 years and (b) age-matched healthy sedentary seniors with (c) active young men (average of 27 years). The results collected show that relative to their sedentary cohorts, muscle from senior sportsmen have: (a) greater maximal isometric force and function, (b) better preserved fiber morphology and ultrastructure of intracellular organelles involved in Ca(2+) handling and ATP production, (c) preserved muscle fibers size resulting from fiber rescue by reinnervation, and (d) lowered expression of genes related to autophagy and reactive oxygen species detoxification. All together, our results indicate that: (a) skeletal muscle of senior sportsmen is actually more similar to that of adults than to that of age-matched sedentaries and (b) signaling pathways controlling muscle mass and metabolism are differently modulated in senior sportsmen to guarantee maintenance of skeletal muscle structure, function, bioenergetic characteristics, and phenotype. Thus, regular physical activity is a good strategy to attenuate age-related general decay of muscle structure and function (ClinicalTrials.gov: NCT01679977).
Chronobiology International | 2007
Milan Sedliak; Taija Finni; Sulin Cheng; William J. Kraemer; Keijo Häkkinen
A time‐of‐day influence on the neuromuscular response to strength training has been previously reported. However, no scientific study has examined the influence of the time of day when strength training is performed on hormonal adaptations. Therefore, the primary purpose of this study was to examine the effects of time‐of‐day‐specific strength training on resting serum concentrations and diurnal patterns of testosterone (T) and cortisol (CORT) as well as maximum isometric strength of knee extensors. Thirty eight diurnally active healthy, previously untrained men (age 20–45 yrs) underwent a ten‐week preparatory strength training period when sessions were conducted between 17:00–19:00 h. Thereafter, these subjects were randomized into either a morning (n=20, training times 07:00–09:00 h) or afternoon (n=18, 7:00–19:00 h) training group for another ten‐week period of time‐of‐day‐specific training (TST). Isometric unilateral knee extension peak torque (MVC) was measured at 07:00, 12:00, 17:00, and 20:30 h over two consecutive days (Day 1 & Day 2) before and after TST. Blood samples were obtained before each clock‐time measurement to assess resting serum T and CORT concentrations. A matched control group (n=11) did not train but participated in the tests. Serum T and CORT concentrations significantly declined from 07:00 to 20:30 h on all test days (Time effect, p<.001). Serum CORT at 07:00 h was significantly higher on Day 1 than Day 2 in the control and afternoon group, both in Pre and Post conditions (Day×Time interaction, p<.01). In the morning group, a similar day‐to‐day difference was present in the Pre but not Post conditions (Time×Group interaction, p<.05). MVC significantly increased after TST in both the morning and afternoon groups (Pre to Post effect, p<.001). In both groups, a typical diurnal variation in MVC (Time effect, p<.001) was found, especially on Day 2 in the Pre condition, and this feature persisted from Pre to Post in the afternoon group. In the morning group, however, diurnal variation was reduced after TST on both Day 1 and Day 2 (Pre to Post×Day×Time×Group interaction, p<.05). In conclusion, 10 weeks of morning time‐of‐day‐specific strength training resulted in reduced morning resting CORT concentrations, presumably as a result of decreased masking effects of anticipatory psychological stress prior to the morning testing. The typical diurnal pattern of maximum isometric strength was blunted by the TST period in the morning but not the afternoon group. However, the TST period had no significant effect on the resting total T concentration and its diurnal pattern and on the absolute increase in maximum strength.
Journal of Neuropathology and Experimental Neurology | 2014
Simone Mosole; Ugo Carraro; Helmut Kern; Stefan Loefler; Hannah Fruhmann; Michael Vogelauer; Samantha Burggraf; Winfried Mayr; Matthias Krenn; Tatjana Paternostro-Sluga; Dušan Hamar; Jan Cvecka; Milan Sedliak; Veronika Tirpakova; Nejc Sarabon; Antonio Musarò; Marco Sandri; Feliciano Protasi; Alessandra Nori; Amber Pond; Sandra Zampieri
The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.
Journal of Sports Sciences | 2008
Milan Sedliak; Taija Finni; Jussi Peltonen; Keijo Häkkinen
Abstract In this study, we examined the effects of time-of-day-specific strength training on maximum strength and electromyography (EMG) of the knee extensors in men. After a 10-week preparatory training period (training times 17:00–19:00 h), 27 participants were randomized into a morning (07:00–09:00 h, n = 14) and an evening group (17:00–19.00 h, n = 13). Both groups then underwent 10 weeks of time-of-day-specific training. A matched control group (n = 7) completed all testing but did not train. Unilateral isometric knee extension peak torque (MVC) and one-repetition maximum half-squat were assessed before and after the preparatory training and after the time-of-day-specific training at times that were not training-specific (between 09:00 and 16:00 h). During training-specific hours, peak torque and EMG during MVC and submaximum isometric contraction at 40% MVC were assessed before and after the time-of-day-specific training. The main finding was that a significant diurnal difference (P < 0.01) in peak torque between the 07:00 and 17:00 h tests decreased after time-of-day-specific training in the morning group but not in the evening or control groups. However, the extent of this time-of-day-specific adaptation varied between individuals. Electromyography during MVC did not show any time-of-day-specific adaptation, suggesting that peripheral rather than neural adaptations are the main source of temporal specificity in strength training.
Journal of Strength and Conditioning Research | 2009
Milan Sedliak; Taija Finni; Sulin Cheng; Markus Lind; Keijo Häkkinen
Sedliak, M, Finni, T, Cheng, S, Lind, M, and Häkkinen, K. Effect of time-of-day-specific strength training on muscular hypertrophy in men. J Strength Cond Res 23(9): 2451-2457, 2009-The purpose of the present study was to examine effects of time-of-day-specific strength training on muscle hypertrophy and maximal strength in men. A training group underwent a 10-week preparatory training (wk 0-wk 10) scheduled between 17:00 and 19:00 hours. Thereafter, the subjects were randomized either to a morning or afternoon training group. They continued with a 10-week time-of-day-specific training (wk 11-wk 20) with training times between 07:00 and 09:00 hours and 17:00 and 19:00 hours in the morning group and afternoon groups, respectively. A control group did not train but was tested at all occasions. Quadriceps femoris (QF) cross-sectional areas (CSA) and volume were obtained by magnetic resonance imaging scan at week 10 and 20. Maximum voluntary isometric strength during unilateral knee extensions and half-squat 1 repetition maximum (1RM) were tested at week 0, 10, and 20 at a randomly given time of day between 09:00 and 16:00 hours. The QF average CSA and volume increased significantly (p < 0.001) in both the morning and afternoon training groups by 2.7% and 3.5%, respectively. The 0.8% difference between the training groups was not significant. The entire 20-week training period resulted in significant increases in maximum voluntary contraction and 1RM of similar magnitude in both training groups (p < 0.001 and p < 0.01, respectively) as compared with the control group. In conclusion, 10 weeks of strength training performed either in the morning or in the afternoon resulted in significant increases in QF muscle size. The magnitude of muscular hypertrophy did not statistically differ between the morning and afternoon training times. From a practical point of view, strength training in the morning and afternoon hours can be similarly efficient when aiming for muscle hypertrophy over a shorter period of time (<3 mo).
International Journal of Sports Medicine | 2009
Min Hu; Taija Finni; L. Zou; M. Perhonen; Milan Sedliak; Markku Alen; Sulin Cheng
This study was designed to assess the effects of strength training on work capacity and parasympathetic heart rate modulation during exercise in physically inactive men. Seventy-four men aged 20-45 were randomly assigned to training (n=52) and control (n=22) groups. Training groups underwent 10-weeks of progressive strength training. Body composition, one-repetition maximum half-squat and maximal oxygen uptake were measured before and after the intervention. Respiratory gases, heart rate and blood lactate were recorded during a VO2max test on a cycle ergometer. Parasympathetic heart rate modulation was analyzed based on the standard deviation of instantaneous beat-to-beat R-R interval variability (SD1) and its normalized unit (SD1n). Muscle strength and lean body mass increased in the training group. Compared to the control group, time to exhaustion increased significantly in the training group (p<0.05). SD1 and SD1n were elevated in the training group at submaximal exercise intensities (100 W, p<0.05). Blood lactate decreased at submaximal intensities when compared to the control group. Strength training increased exercise capacity, and improved vagal modulation of heart rate at submaximal exercise intensities. These changes may have favourable cardiovascular health implications for sedentary men during normal daily activities.
European Journal of Translational Myology | 2015
Sandra Zampieri; Simone Mosole; Stefan Löfler; Hannah Fruhmann; Samantha Burggraf; Jan Cvecka; Dušan Hamar; Milan Sedliak; Veronica Tirptakova; Nejc Sarabon; Winfried Mayr; Helmut Kern
Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type) which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling). Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients’ quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP) exercise or electrical stimulation (ES). Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (p<0.001), together with a significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005). A significant decrease of slow type fiber diameter was observed in both ES and LP trained subjects (p<0.001). Altogether these results demonstrate the effectiveness of physical exercise either voluntary (LP) or passive (ES) to improve the functional performances of aging muscles. Here ES is demonstrated to be a safe home-based method to counteract fast type fiber atrophy, typically associated with aging skeletal muscle.
European Journal of Translational Myology | 2015
Jan Cvecka; Veronika Tirpakova; Milan Sedliak; Helmut Kern; Winfried Mayr; Dušan Hamar
Aging is a multifactorial irreversible process associated with significant decline in muscle mass and neuromuscular functions. One of the most efficient methods to counteract age-related changes in muscle mass and function is physical exercise. An alternative effective intervention to improve muscle structure and performance is electrical stimulation. In the present work we present the positive effects of physical activity in elderly and a study where the effects of a 8-week period of functional electrical stimulation and strength training with proprioceptive stimulation in elderly are compared.
Alzheimers & Dementia | 2015
Barbara Ukropcova; Lucia Slobodova; Matej Vajda; Patrik Krumpolec; Veronika Tirpakova; Silvia Vallova; Stanislav Sutovsky; Peter Turcani; Milan Sedliak; Jozef Ukropec
important given the trend toward earlier and more accurate diagnosis of dementia and the emphasis on providing person-centered care. SHARE’s approach involves discussions led by a SHARE counselor with both “SHARE partners”. This approach has shown great promise in previous trials for improving a variety of outcomes for both individuals. Moreover, SHARE has been found to be feasible and acceptable to early-stage families: persons who have early-stage dementia are often fully aware of the meaning of their diagnosis and able to communicate care choices and preferences. This presentation will describe the SHARE Program and report on the results of its randomized controlled trial with 130 care dyads (e.g., improved carer symptoms of depression, lessened relationship strain, and increased service use). Discussion will focus on the utility of a dyadic approach, future directions for the SHARE program, and the implications for enhancing the shortand longterm well-being of both care partners.
Chronobiology International | 2018
Milan Sedliak; Michal Zeman; Gabriel Buzgó; Jan Cvecka; Dušan Hamar; Eugen Laczo; Monika Okuliarova; Marián Vanderka; T. Kampmiller; Keijo Häkkinen; Juha P. Ahtiainen; Juha J. Hulmi; Tormod S. Nilsen; Håvard Wiig; Truls Raastad
ABSTRACT It has been clearly established that maximal force and power is lower in the morning compared to noon or afternoon hours. This morning neuromuscular deficit can be diminished by regularly training in the morning hours. However, there is limited and contradictory information upon hypertrophic adaptations to time-of-day-specific resistance training. Moreover, no cellular or molecular mechanisms related to muscle hypertrophy adaptation have been studied with this respect. Therefore, the present study examined effects of the time-of-day-specific resistance training on muscle hypertrophy, phosphorylation of selected proteins, hormonal concentrations and neuromuscular performance. Twenty five previously untrained males were randomly divided into a morning group (n = 11, age 23 ± 2 yrs), afternoon group (n = 7, 24 ± 4 yrs) and control group (n = 7, 24 ± 3 yrs). Both the morning and afternoon group underwent hypertrophy-type of resistance training with 22 training sessions over an 11-week period performed between 07:30–08:30 h and 16:00–17:00 h, respectively. Isometric MVC was tested before and immediately after an acute loading exclusively during their training times before and after the training period. Before acute loadings, resting blood samples were drawn and analysed for plasma testosterone and cortisol. At each testing occasion, muscle biopsies from m. vastus lateralis were obtained before and 60 min after the acute loading. Muscle specimens were analysed for muscle fibre cross-sectional areas (CSA) and for phosphorylated p70S6K, rpS6, p38MAPK, Erk1/2, and eEF2. In addition, the right quadriceps femoris was scanned with MRI before and after the training period. The control group underwent the same testing, except for MRI, between 11:00 h and 13:00 h but did not train. Voluntary muscle strength increased significantly in both the morning and afternoon training group by 16.9% and 15.2 %, respectively. Also muscle hypertrophy occurred by 8.8% and 11.9% (MRI, p < 0.001) and at muscle fibre CSA level by 21% and 18% (p < 0.01) in the morning and afternoon group, respectively. No significant changes were found in controls within these parameters. Both pre- and post-training acute loadings induced a significant (p < 0.001) reduction in muscle strength in all groups, not affected by time of day or training. The post-loading phosphorylation of p70S6Thr421/Ser424 increased independent of the time of day in the pre-training condition, whereas it was significantly increased in the morning group only after the training period (p < 0.05). Phosphorylation of rpS6 and p38MAPK increased acutely both before and after training in a time-of-day independent manner (p < 0.05 at all occasions). Phosphorylation of p70S6Thr389, eEF2 and Erk1/2 did not change at any time point. No statistically significant correlations were found between changes in muscle fibre CSA, MRI and cell signalling data. Resting testosterone was not statistically different among groups at any time point. Resting cortisol declined significantly from pre- to post-training in all three groups (p < 0.05). In conclusion, similar levels of muscle strength and hypertrophy could be achieved regardless of time of the day in previously untrained men. However, at the level of skeletal muscle signalling, the extent of adaptation in some parameters may be time of day dependent.