Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan F. Veneman is active.

Publication


Featured researches published by Jan F. Veneman.


The International Journal of Robotics Research | 2006

A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots

Jan F. Veneman; R. Ekkelenkamp; R. Kruidhof; F.C.T. van der Helm; H. van der Kooij

Within the context of impedance controlled exoskeletons, common actuators have important drawbacks. Either the actuators are heavy, have a complex structure or are poor torque sources, due to gearing or heavy nonlinearity. Considering our application, an impedance controlled gait rehabilitation robot for treadmill-training, we designed an actuation system that might avoid these drawbacks. It combines a lightweight joint and a simple structure with adequate torque source quality. It consists of a servomotor, a flexible Bowden cable transmission, and a force feedback loop based on a series elastic element. A basic model was developed that is shown to describe the basic dynamics of the actuator well enough for design purpose. Further measurements show that performance is sufficient for use in a gait rehabilitation robot. The demanded force tracking bandwidths were met: 11 Hz bandwidth for the full force range (demanded 4 Hz) and 20 Hz bandwidth for smaller force range (demanded 12 Hz). The mechanical output impedance of the actuator could be reduced to hardly perceptible level. Maxima of about 0.7 Nm peaks for 4 Hz imposed motions appeared, corresponding to less than 2.5% of the maximal force output. These peaks were caused by the stick friction in the Bowden cables. Spring stiffness variation showed that both a too stiff and a too compliant spring can worsen performance. A stiff spring reduces the maximum allowable controller gain. The relatively low control gain then causes a larger effect of stick in the force output, resulting in a less smooth output in general. Low spring stiffness, on the other side, decreases the performance of the system, because saturation will occur sooner.


IEEE Robotics & Automation Magazine | 2008

Compliant actuation of rehabilitation robots

Heike Vallery; Jan F. Veneman; van Edwin H.F. Asseldonk; R. Ekkelenkamp; Martin Buss; van der Herman Kooij

This article discusses the pros and cons of compliant actuation for rehabilitation robots on the example of LOPES, focusing on the cons. After illustrating the bandwidth limitations, a new result has been derived: if stability in terms of passivity of the haptic device is desired, the renderable stiffness is bounded by the stiffness of the SEAs elastic component. In practical experiments with the VMC, the aforementioned limitations affected the control performance. Desired gait modifications were not tracked exactly, because the subjects were able to deviate from the prescribed pattern even in the stiffest possible configuration. Despite the limitations, the practical experiments also demonstrated the general effectiveness of the realization. Manipulation of selected gait parameters is possible, whereby other parameters are left unaffected. This high selectivity is made possible by the low level of undesired interaction torques, which is achieved by elastic decoupling of motor mass and a lightweight exoskeleton. The discrepancy between theoretical bounds and rendered stiffness indicated that healthy subjects might represent a stabilizing component of the coupled system, which could be different for patients. In light of the theoretical stability analysis and with the focus on patients, the LOPES actuation was slightly modified. The robot was equipped with stiffer springs to obtain sufficient stiffness and to ensure stability without relying on stabilizing effects of the human. For this application, the disadvantages of compliant actuation can thus be tolerated or dealt with, and they are small compared with the advantages. Given that a rehabilitation robot, in the first place, is supposed to imitate therapist action, the limitations of bandwidth and stiffness do not pose severe problems. In contrast, safety and backdrivability are highly relevant, and they can be ensured easier with a compliant actuator. Therefore, we conclude that compliant actuation and a lightweight exoskeleton provide effective means to accomplish the desired AAN behavior of a rehabilitation robot. The next step is to evaluate the robot behavior, control performance, and therapeutic effectiveness in patient studies.


international conference on rehabilitation robotics | 2005

Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training

Jan F. Veneman; R. Ekkelenkamp; R. Kruidhof; F.C.T. van der Helm; H. van der Kooij

Common actuators have important drawbacks for use in an exoskeleton type of rehabilitation (training) robot. Either the actuators are heavy, complex or poor torque sources. A new actuation system is proposed and tested that combines a lightweight joint and a simple structure with adequate torque source quality. It consists of a servomotor, a flexible Bowden cable transmission, and a force feedback loop based on a series elastic element. Measurements show that performance is sufficient for use in a gait rehabilitation robot.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2008

The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control

Edwin H.F. van Asseldonk; Jan F. Veneman; R. Ekkelenkamp; Jaap Buurke; Frans C. T. van der Helm; Herman van der Kooij

“Assist as needed” control algorithms promote activity of patients during robotic gait training. Implementing these requires a free walking mode of a device, as unassisted motions should not be hindered. The goal of this study was to assess the normality of walking in the free walking mode of the LOPES gait trainer, an 8 degrees-of-freedom lightweight impedance controlled exoskeleton. Kinematics, gait parameters and muscle activity of walking in a free walking mode in the device were compared with those of walking freely on a treadmill. Average values and variability of the spatio-temporal gait variables showed no or small (relative to cycle-to-cycle variability) changes and the kinematics showed a significant and relevant decrease in knee angle range only. Muscles involved in push off showed a small decrease, whereas muscles involved in acceleration and deceleration of the swing leg showed an increase of their activity. Timing of the activity was mainly unaffected. Most of the observed differences could be ascribed to the inertia of the exoskeleton. Overall, walking with the LOPES resembled free walking, although this required several adaptations in muscle activity. These adaptations are such that we expect that Assist as Needed training can be implemented in LOPES.


international conference on rehabilitation robotics | 2005

LOPES: selective control of gait functions during the gait rehabilitation of CVA patients

R. Ekkelenkamp; Jan F. Veneman; van der H. Kooij

LOPES aims for an active role of the patient by selective and partial support of gait functions during robotic treadmill training sessions. Virtual model control (VMC) was applied to the robot as an intuitive method for translating current treadmill gait rehabilitation therapy programs into robotic rehabilitation therapy. Virtual models are proposed for the selective control of gait functions during treadmill training. From this collection of models several, representing the extremes of the entire set of virtual models, were implemented. The results show that VMC is a promising method for the control of a gait rehabilitation robot.


Gait & Posture | 2008

Fixating the pelvis in the horizontal plane affects gait characteristics

Jan F. Veneman; Jasper T. Menger; Edwin H.F. van Asseldonk; Frans C. T. van der Helm; Herman van der Kooij

In assistive devices for neuro-rehabilitation, natural human motions are partly restricted by the device. This may affect the normality of walking during training. This research determines effects on gait of fixating the pelvis translations in the horizontal plane during treadmill walking. Direct effects on the motion of the pelvis and external forces acting on the pelvis were measured. Several gait descriptors (step parameters, trunk angles and a ground reaction force parameter) were defined and measured to indicate changes. We observed the effect of the pelvis fixation on these parameters while varying gait velocity (0.35, 0.60 and 0.90 m/s). It was shown that the fixation caused a reduction of step width by 33%, and an increase of step length of 19%. Sagittal and coronal trunk rotations changed with +68% and -54% respectively. The fixation also significantly changed the effect of speed on most descriptors. It can therefore be concluded that a fixation of the pelvis severely affects gait dynamics and that it should be avoided if natural walking should be possible during training.


ieee international conference on rehabilitation robotics | 2007

Selective control of a subtask of walking in a robotic gait trainer(LOPES)

E.H.F. van Asseldonk; R. Ekkelenkamp; Jan F. Veneman; F.C.T. van der Helm; H. van der Kooij

Robotic gait trainers are used all over the world for the rehabilitation of stroke patients, despite relatively little is known about how the robots should be controlled to achieve the optimal improvement. Most devices control complete joint trajectories and assume symmetry between both legs by either a position or an impedance control. However we believe that the control should not be on a joint level but on a subtask level (i.e. foot clearance, balance control). To this end we have chosen for virtual model control(VMC) to define a set of controllers that can assist in each of these tasks. Thus enabling the exoskeleton to offer selective support and evaluation of each substask during rehabilitation training. The aim of this explorative pilot study was to assess the performance of a VMC of the step height and to assess if selective control of the step height left the remaining of the walking pattern unaffected. Four young healthy subjects walked on a treadmill with their legs and pelvis attached to the lopes exoskeleton in 3 different conditions: (1) providing minimal resistance, (2) control of the left step height with a low stiffness (3) control of the step height with a large stiffness. We have shown that it is possible to exert a vertical forces for the support of foot clearance during the swing phase. The higher stiffness of the VMC resulted in a greater change of the step height, which was achieved by a larger increase of the maximal hip and knee flexion compared to the low stiffness condition. The control of the step height resulted in minor changes in the cycle time and swing time. The joint angles also showed only minor changes. The preliminary results suggest that we were able to control a subtask of walking, while leaving the remaining walking trajectory largely unaffected. In the near future, control of other subtask will be implemented and evaluated in isolation and in conjunction with each other.


international conference of the ieee engineering in medicine and biology society | 2006

Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot

Herman van der Kooij; Jan F. Veneman; R. Ekkelenkamp

We have designed and built a lower extremity powered exo-skeleton (LOPES) for the training of post-stroke patients. This paper describes the philosophy behind the design of LOPES, motivates the choices that have been made and gives some exemplary results of the ranges of mechanical impedances that can be achieved


IEEE Robotics & Automation Magazine | 2015

Benchmarking Bipedal Locomotion: A Unified Scheme for Humanoids, Wearable Robots, and Humans

Diego Torricelli; José González-Vargas; Jan F. Veneman; Katja D. Mombaur; Nikos G. Tsagarakis; Antonio J. del-Ama; Ángel Gil-Agudo; Juan Moreno; José Luis Pons

In the field of robotics, there is a growing awareness of the importance of benchmarking [1], [2]. Benchmarking not only allows the assessment and comparison of the performance of different technologies but also defines and supports the standardization and regulation processes during their introduction to the market. Its importance has been recently emphasized by the adoption of the technology readiness levels (TRLs) in the Horizon 2020 information and communication technologies by the European Union as an important guideline to assess when a technology can shift from one TRL to the other. The objective of this article is to define the basis of a benchmarking scheme for the assessment of bipedal locomotion that could be applied and shared across different research communities.


Journal of Rehabilitation Research and Development | 2011

Variable structure pantograph mechanism with spring suspension system for comprehensive upper-limb haptic movement training.

Joel C. Perry; Jakob Oblak; Je H. Jung; Imre Cikajlo; Jan F. Veneman; Nika Goljar; Natasa Bizovicar; Zlatko Matjacic; Thierry Keller

Numerous haptic devices have been developed for upper-limb neurorehabilitation, but their widespread use has been largely impeded because of complexity and cost. Here, we describe a variable structure pantograph mechanism combined with a spring suspension system that produces a versatile rehabilitation robot, called Universal Haptic Pantograph, for movement training of the shoulder, elbow, and wrist. The variable structure is a 5-degree-of-freedom (DOF) mechanism composed of 7 joints, 11 joint axes, and 3 configurable joint locks that reduce the number of system DOFs to between 0 and 3. The resulting device has eight operational modes: Arm, Wrist, ISO (isometric) 1, ISO 2, Reach, Lift 1, Lift 2, and Steer. The combination of available work spaces (reachable areas) shows a high suitability for movement training of most upper-limb activities of daily living. The mechanism, driven by series elastic actuators, performs similarly in all operational modes, with a single control scheme and set of gains. Thus, a single device with minimal setup changes can be used to treat a variety of upper-limb impairments that commonly afflict veterans with stroke, traumatic brain injury, or other direct trauma to the arm. With appropriately selected design parameters, the developed multimode haptic device significantly reduces the costs of robotic hardware for full-arm rehabilitation while performing similarly to that of single-mode haptic devices. We conducted case studies with three patients with stroke who underwent clinical training using the developed mechanism in Arm, Wrist, and/or Reach operational modes. We assessed outcomes using Fugl-Meyer Motor Assessment and Wolf Motor Function Test scores showing that upper-limb ability improved significantly following training sessions.

Collaboration


Dive into the Jan F. Veneman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.C.T. van der Helm

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge