Jan Pergl
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Pergl.
Ecology Letters | 2011
Montserrat Vilà; José L. Espinar; Martin Hejda; Philip E. Hulme; Vojtěch Jarošík; John L. Maron; Jan Pergl; Urs Schaffner; Yan Sun; Petr Pyšek
Biological invasions cause ecological and economic impacts across the globe. However, it is unclear whether there are strong patterns in terms of their major effects, how the vulnerability of different ecosystems varies and which ecosystem services are at greatest risk. We present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems. Across studies, alien plants had a significant effect in 11 of 24 different types of impact assessed. The magnitude and direction of the impact varied both within and between different types of impact. On average, abundance and diversity of the resident species decreased in invaded sites, whereas primary production and several ecosystem processes were enhanced. While alien N-fixing species had greater impacts on N-cycling variables, they did not consistently affect other impact types. The magnitude of the impacts was not significantly different between island and mainland ecosystems. Overall, alien species impacts are heterogeneous and not unidirectional even within particular impact types. Our analysis also reveals that by the time changes in nutrient cycling are detected, major impacts on plant species and communities are likely to have already occurred.
Global Change Biology | 2012
Petr Pyšek; Vojtěch Jarošík; Philip E. Hulme; Jan Pergl; Martin Hejda; Urs Schaffner; Montserrat Vilà
With the growing body of literature assessing the impact of invasive alien plants on resident species and ecosystems, a comprehensive assessment of the relationship between invasive species traits and environmental settings of invasion on the characteristics of impacts is needed. Based on 287 publications with 1551 individual cases that addressed the impact of 167 invasive plant species belonging to 49 families, we present the first global overview of frequencies of significant and non-significant ecological impacts and their directions on 15 outcomes related to the responses of resident populations, species, communities and ecosystems. Species and community outcomes tend to decline following invasions, especially those for plants, but the abundance and richness of the soil biota, as well as concentrations of soil nutrients and water, more often increase than decrease following invasion. Data mining tools revealed that invasive plants exert consistent significant impacts on some outcomes (survival of resident biota, activity of resident animals, resident community productivity, mineral and nutrient content in plant tissues, and fire frequency and intensity), whereas for outcomes at the community level, such as species richness, diversity and soil resources, the significance of impacts is determined by interactions between species traits and the biome invaded. The latter outcomes are most likely to be impacted by annual grasses, and by wind pollinated trees invading mediterranean or tropical biomes. One of the clearest signals in this analysis is that invasive plants are far more likely to cause significant impacts on resident plant and animal richness on islands rather than mainland. This study shows that there is no universal measure of impact and the pattern observed depends on the ecological measure examined. Although impact is strongly context dependent, some species traits, especially life form, stature and pollination syndrome, may provide a means to predict impact, regardless of the particular habitat and geographical region invaded.
Trends in Ecology and Evolution | 2008
Petr Pyšek; Jan Pergl; Vojtěch Jarošík; Zuzana Sixtová; Ewald Weber
Invasive alien species come from most taxonomic groups, and invasion biology is searching for robust cross-taxon generalizations and principles. An analysis of 2,670 papers dealing with 892 invasive species showed that all major groups of invaders are well studied, but that most information on the mechanisms of invasion has emerged from work on a limited number of the most harmful invaders. A strong geographical bias, with Africa and Asia understudied, inhibits a balanced understanding of invasion, because we might be lacking knowledge of specific invasion mechanisms from poorly studied, regionally specific habitats. International cooperation is required to achieve a more geographically balanced picture of biological invasions. Invasive species with the greatest impact are best studied, but more studies of species that are naturalized but not (yet) invasive are needed to improve understanding of the mechanisms acting during the naturalization phase of invasions and leading to successful invasion.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Petr Pyšek; Vojtěch Jarošík; Philip E. Hulme; Ingolf Kühn; Jan Wild; Margarita Arianoutsou; Sven Bacher; François Chiron; Viktoras Didžiulis; Franz Essl; Piero Genovesi; Francesca Gherardi; Martin Hejda; Salit Kark; Philip W. Lambdon; Marie Laure Desprez-Loustau; Wolfgang Nentwig; Jan Pergl; Katja Poboljšaj; Wolfgang Rabitsch; Alain Roques; David B. Roy; Susan Shirley; Wojciech Solarz; Montserrat Vilà; Marten Winter
The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth.
PLOS Biology | 2014
Tim M. Blackburn; Franz Essl; Thomas P. Oléron Evans; Philip E. Hulme; Jonathan M. Jeschke; Ingolf Kühn; Sabrina Kumschick; Zuzana Marková; Agata Mrugała; Wolfgang Nentwig; Jan Pergl; Petr Pyšek; Wolfgang Rabitsch; Anthony Ricciardi; Agnieszka Sendek; Montserrat Vilà; John R. U. Wilson; Marten Winter; Piero Genovesi; Sven Bacher
We present a method for categorising and comparing alien or invasive species in terms of how damaging they are to the environment, that can be applied across all taxa, scales, and impact metrics.
Nature | 2015
Mark van Kleunen; Wayne Dawson; Franz Essl; Jan Pergl; Marten Winter; Ewald Weber; Holger Kreft; Patrick Weigelt; John Kartesz; Misako Nishino; Liubov A. Antonova; Julie F. Barcelona; Francisco Cabezas; Dairon Cárdenas; Juliana Cárdenas-Toro; Nicolás Castaño; Eduardo Chacón; Cyrille Chatelain; Aleksandr L. Ebel; Estrela Figueiredo; Nicol Fuentes; Quentin Groom; Lesley Henderson; Inderjit; Andrey N. Kupriyanov; Silvana Masciadri; Jan Meerman; Olga Morozova; Dietmar Moser; Daniel L. Nickrent
All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.
Trends in Ecology and Evolution | 2013
Philip E. Hulme; Petr Pyšek; Vojtěch Jarošík; Jan Pergl; Urs Schaffner; Montserrat Vilà
Quantitative assessments of alien plant impacts are essential to inform management to ensure that resources are prioritized against the most problematic species and that restoration targets the worst-affected ecosystem processes. Here, we present the first detailed critique of quantitative field studies of alien plant impacts and highlight biases in the biogeography and life form of the target species, the responses assessed, and the extent to which spatial variability is addressed. Observed impacts often fail to translate to ecosystem services or evidence of environmental degradation. The absence of overarching hypotheses regarding impacts has reduced the consistency of approaches worldwide and prevented the development of predictive tools. Future studies must ensure that the links between species traits, ecosystem stocks, and ecosystem flows, as well as ecosystem services, are explicitly defined.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Marten Winter; Oliver Schweiger; Stefan Klotz; Wolfgang Nentwig; Pavlos Andriopoulos; Margarita Arianoutsou; Corina Basnou; Pinelopi Delipetrou; Viktoras Didžiulis; Martin Hejda; Philip E. Hulme; Philip W. Lambdon; Jan Pergl; Petr Pyšek; David B. Roy; Ingolf Kühn
Human activities have altered the composition of biotas through two fundamental processes: native extinctions and alien introductions. Both processes affect the taxonomic (i.e., species identity) and phylogenetic (i.e., species evolutionary history) structure of species assemblages. However, it is not known what the relative magnitude of these effects is at large spatial scales. Here we analyze the large-scale effects of plant extinctions and introductions on taxonomic and phylogenetic diversity of floras across Europe, using data from 23 regions. Considering both native losses and alien additions in concert reveals that plant invasions since AD 1500 exceeded extinctions, resulting in (i) increased taxonomic diversity (i.e., species richness) but decreased phylogenetic diversity within European regions, and (ii) increased taxonomic and phylogenetic similarity among European regions. Those extinct species were phylogenetically and taxonomically unique and typical of individual regions, and extinctions usually were not continent-wide and therefore led to differentiation. By contrast, because introduced alien species tended to be closely related to native species, the floristic differentiation due to species extinction was lessened by taxonomic and phylogenetic homogenization effects. This was especially due to species that are alien to a region but native to other parts of Europe. As a result, floras of many European regions have partly lost and will continue to lose their uniqueness. The results suggest that biodiversity needs to be assessed in terms of both species taxonomic and phylogenetic identity, but the latter is rarely used as a metric of the biodiversity dynamics.
Conservation Biology | 2014
Jonathan M. Jeschke; Sven Bacher; Tim M. Blackburn; Jaimie T. A. Dick; Franz Essl; Thomas J. Evans; Mirijam Gaertner; Philip E. Hulme; Ingolf Kühn; Agata Mrugała; Jan Pergl; Petr Pyšek; Wolfgang Rabitsch; Anthony Ricciardi; Agnieszka Sendek; Montserrat Vilà; Marten Winter; Sabrina Kumschick
Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No-Nativas Resumen Las especies no-nativas pueden causar cambios en los ecosistemas donde son introducidas. Estos cambios, o algunos de ellos, usualmente se denominan como impactos; estos pueden ser variados y potencialmente dañinos para los ecosistemas y la biodiversidad. Sin embargo, los impactos de la mayoría de las especies no-nativas están pobremente entendidos y una síntesis de información disponible se ve obstaculizada porque los autores continuamente no definen claramente impacto. Discutimos que definir explícitamente el impacto de las especies no-nativas promoverá el progreso hacia un mejor entendimiento de las implicaciones de los cambios a la biodiversidad y los ecosistemas causados por especies no-nativas; ayudar a entender cuáles aspectos de los debates científicos sobre especies no-nativas son debidos a definiciones diversas y cuáles representan un verdadero desacuerdo científico; y mejorar la comunicación entre científicos de diferentes disciplinas y entre científicos, administradores y quienes hacen las políticas. Por estas razones y basándonos en ejemplos tomados de la literatura, concebimos siete preguntas clave que caen en cuatro categorías: direccionalidad, clasificación y medida, cambios ecológicos o socio-económicos, y escala. Estas preguntas deberían ayudar en la formulación de definiciones claras y prácticas del impacto para encajar mejor con contextos científicos, de las partes interesadas o legislativos específicos.
Nature Communications | 2017
Hanno Seebens; Tim M. Blackburn; Ellie E. Dyer; Piero Genovesi; Philip E. Hulme; Jonathan M. Jeschke; Shyama Pagad; Petr Pyšek; Marten Winter; Margarita Arianoutsou; Sven Bacher; Bernd Blasius; Giuseppe Brundu; César Capinha; Laura Celesti-Grapow; Wayne Dawson; Stefan Dullinger; Nicol Fuentes; Heinke Jäger; John Kartesz; Marc Kenis; Holger Kreft; Ingolf Kühn; Bernd Lenzner; Andrew M. Liebhold; Alexander Mosena; Dietmar Moser; Misako Nishino; David A. Pearman; Jan Pergl
Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.