Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingolf Kühn is active.

Publication


Featured researches published by Ingolf Kühn.


Proceedings of the Royal Society of London. Biological Sciences | 2014

A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers.

Myla F. J. Aronson; Frank A. La Sorte; Charles H. Nilon; Madhusudan Katti; Mark A. Goddard; Christopher A. Lepczyk; Paige S. Warren; Nicholas S. G. Williams; S.S. Cilliers; Bruce D. Clarkson; Cynnamon Dobbs; Rebecca W. Dolan; Marcus Hedblom; Stefan Klotz; Jip Louwe Kooijmans; Ingolf Kühn; Ian MacGregor-Fors; Mark J. McDonnell; Ulla Mörtberg; Petr Pyšek; S.J. Siebert; Jessica Sushinsky; Peter Werner; Marten Winter

Urbanization contributes to the loss of the worlds biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the worlds cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km2) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Disentangling the role of environmental and human pressures on biological invasions across Europe

Petr Pyšek; Vojtěch Jarošík; Philip E. Hulme; Ingolf Kühn; Jan Wild; Margarita Arianoutsou; Sven Bacher; François Chiron; Viktoras Didžiulis; Franz Essl; Piero Genovesi; Francesca Gherardi; Martin Hejda; Salit Kark; Philip W. Lambdon; Marie Laure Desprez-Loustau; Wolfgang Nentwig; Jan Pergl; Katja Poboljšaj; Wolfgang Rabitsch; Alain Roques; David B. Roy; Susan Shirley; Wojciech Solarz; Montserrat Vilà; Marten Winter

The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Socioeconomic legacy yields an invasion debt

Franz Essl; Stefan Dullinger; Wolfgang Rabitsch; Philip E. Hulme; Karl Hülber; Vojt ech Jarošík; Ingrid Kleinbauer; Fridolin Krausmann; Ingolf Kühn; Wolfgang Nentwig; Montserrat Vilà; Piero Genovesi; Francesca Gherardi; Marie-Laure Desprez-Loustau; Alain Roques; Petr Pyšek

Globalization and economic growth are widely recognized as important drivers of biological invasions. Consequently, there is an increasing need for governments to address the role of international trade in their strategies to prevent species introductions. However, many of the most problematic alien species are not recent arrivals but were introduced several decades ago. Hence, current patterns of alien-species richness may better reflect historical rather than contemporary human activities, a phenomenon which might be called “invasion debt.” Here, we show that across 10 taxonomic groups (vascular plants, bryophytes, fungi, birds, mammals, reptiles, amphibians, fish, terrestrial insects, and aquatic invertebrates) in 28 European countries, current numbers of alien species established in the wild are indeed more closely related to indicators of socioeconomic activity from the year 1900 than to those from 2000, although the majority of species introductions occurred during the second half of the 20th century. The strength of the historical signal varies among taxonomic groups, with those possessing good capabilities for dispersal (birds, insects) more strongly associated with recent socioeconomic drivers. Nevertheless, our results suggest a considerable historical legacy for the majority of the taxa analyzed. The consequences of the current high levels of socioeconomic activity on the extent of biological invasions will thus probably not be completely realized until several decades into the future.


PLOS Biology | 2014

A unified classification of alien species based on the magnitude of their environmental impacts.

Tim M. Blackburn; Franz Essl; Thomas P. Oléron Evans; Philip E. Hulme; Jonathan M. Jeschke; Ingolf Kühn; Sabrina Kumschick; Zuzana Marková; Agata Mrugała; Wolfgang Nentwig; Jan Pergl; Petr Pyšek; Wolfgang Rabitsch; Anthony Ricciardi; Agnieszka Sendek; Montserrat Vilà; John R. U. Wilson; Marten Winter; Piero Genovesi; Sven Bacher

We present a method for categorising and comparing alien or invasive species in terms of how damaging they are to the environment, that can be applied across all taxa, scales, and impact metrics.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora

Marten Winter; Oliver Schweiger; Stefan Klotz; Wolfgang Nentwig; Pavlos Andriopoulos; Margarita Arianoutsou; Corina Basnou; Pinelopi Delipetrou; Viktoras Didžiulis; Martin Hejda; Philip E. Hulme; Philip W. Lambdon; Jan Pergl; Petr Pyšek; David B. Roy; Ingolf Kühn

Human activities have altered the composition of biotas through two fundamental processes: native extinctions and alien introductions. Both processes affect the taxonomic (i.e., species identity) and phylogenetic (i.e., species evolutionary history) structure of species assemblages. However, it is not known what the relative magnitude of these effects is at large spatial scales. Here we analyze the large-scale effects of plant extinctions and introductions on taxonomic and phylogenetic diversity of floras across Europe, using data from 23 regions. Considering both native losses and alien additions in concert reveals that plant invasions since AD 1500 exceeded extinctions, resulting in (i) increased taxonomic diversity (i.e., species richness) but decreased phylogenetic diversity within European regions, and (ii) increased taxonomic and phylogenetic similarity among European regions. Those extinct species were phylogenetically and taxonomically unique and typical of individual regions, and extinctions usually were not continent-wide and therefore led to differentiation. By contrast, because introduced alien species tended to be closely related to native species, the floristic differentiation due to species extinction was lessened by taxonomic and phylogenetic homogenization effects. This was especially due to species that are alien to a region but native to other parts of Europe. As a result, floras of many European regions have partly lost and will continue to lose their uniqueness. The results suggest that biodiversity needs to be assessed in terms of both species taxonomic and phylogenetic identity, but the latter is rarely used as a metric of the biodiversity dynamics.


Biological Reviews | 2010

Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination

Oliver Schweiger; Jacobus C. Biesmeijer; Riccardo Bommarco; Thomas Hickler; Philip E. Hulme; Stefan Klotz; Ingolf Kühn; Mari Moora; Anders Nielsen; Ralf Ohlemüller; Theodora Petanidou; Simon G. Potts; Petr Pyšek; Jane C. Stout; Martin T. Sykes; Thomas Tscheulin; Montserrat Vilà; Gian-Reto Walther; Catrin Westphal; Marten Winter; Martin Zobel; Josef Settele

Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.


Ecology Letters | 2008

Challenging Urban Species Diversity: Contrasting Phylogenetic Patterns across Plant Functional Groups in Germany

Sonja Knapp; Ingolf Kühn; Oliver Schweiger; Stefan Klotz

Cities are hotspots of plant species richness, harboring more species than their rural surroundings, at least over large enough scales. However, species richness does not necessarily cover all aspects of biodiversity such as phylogenetic relationships. Ignoring these relationships, our understanding of how species assemblages develop and change in a changing environment remains incomplete. Given the high vascular plant species richness of urbanized areas in Germany, we asked whether these also have a higher phylogenetic diversity than rural areas, and whether phylogenetic diversity patterns differ systematically between species groups characterized by specific functional traits. Calculating the average phylogenetic distinctness of the total German flora and accounting for spatial autocorrelation, we show that phylogenetic diversity of urban areas does not reflect their high species richness. Hence, high urban species richness is mainly due to more closely related species that are functionally similar and able to deal with urbanization. This diminished phylogenetic information might decrease the floras capacity to respond to environmental changes.


Conservation Biology | 2014

Defining the Impact of Non-Native Species

Jonathan M. Jeschke; Sven Bacher; Tim M. Blackburn; Jaimie T. A. Dick; Franz Essl; Thomas J. Evans; Mirijam Gaertner; Philip E. Hulme; Ingolf Kühn; Agata Mrugała; Jan Pergl; Petr Pyšek; Wolfgang Rabitsch; Anthony Ricciardi; Agnieszka Sendek; Montserrat Vilà; Marten Winter; Sabrina Kumschick

Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No-Nativas Resumen Las especies no-nativas pueden causar cambios en los ecosistemas donde son introducidas. Estos cambios, o algunos de ellos, usualmente se denominan como impactos; estos pueden ser variados y potencialmente dañinos para los ecosistemas y la biodiversidad. Sin embargo, los impactos de la mayoría de las especies no-nativas están pobremente entendidos y una síntesis de información disponible se ve obstaculizada porque los autores continuamente no definen claramente impacto. Discutimos que definir explícitamente el impacto de las especies no-nativas promoverá el progreso hacia un mejor entendimiento de las implicaciones de los cambios a la biodiversidad y los ecosistemas causados por especies no-nativas; ayudar a entender cuáles aspectos de los debates científicos sobre especies no-nativas son debidos a definiciones diversas y cuáles representan un verdadero desacuerdo científico; y mejorar la comunicación entre científicos de diferentes disciplinas y entre científicos, administradores y quienes hacen las políticas. Por estas razones y basándonos en ejemplos tomados de la literatura, concebimos siete preguntas clave que caen en cuatro categorías: direccionalidad, clasificación y medida, cambios ecológicos o socio-económicos, y escala. Estas preguntas deberían ayudar en la formulación de definiciones claras y prácticas del impacto para encajar mejor con contextos científicos, de las partes interesadas o legislativos específicos.


Nature Communications | 2017

No saturation in the accumulation of alien species worldwide

Hanno Seebens; Tim M. Blackburn; Ellie E. Dyer; Piero Genovesi; Philip E. Hulme; Jonathan M. Jeschke; Shyama Pagad; Petr Pyšek; Marten Winter; Margarita Arianoutsou; Sven Bacher; Bernd Blasius; Giuseppe Brundu; César Capinha; Laura Celesti-Grapow; Wayne Dawson; Stefan Dullinger; Nicol Fuentes; Heinke Jäger; John Kartesz; Marc Kenis; Holger Kreft; Ingolf Kühn; Bernd Lenzner; Andrew M. Liebhold; Alexander Mosena; Dietmar Moser; Misako Nishino; David A. Pearman; Jan Pergl

Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.


Environmental Sciences Europe | 2011

Invasive species in Europe: ecology, status, and policy

Reuben P. Keller; Juergen Geist; Johnathan M Jeschke; Ingolf Kühn

Globalization of trade and travel has facilitated the spread of non-native species across the earth. A proportion of these species become established and cause serious environmental, economic, and human health impacts. These species are referred to as invasive, and are now recognized as one of the major drivers of biodiversity change across the globe. As a long-time centre for trade, Europe has seen the introduction and subsequent establishment of at least several thousand non-native species. These range in taxonomy from viruses and bacteria to fungi, plants, and animals. Although invasive species cause major negative impacts across all regions of Europe, they also offer scientists the opportunity to develop and test theory about how species enter and leave communities, how non-native and native species interact with each other, and how different types of species affect ecosystem functions. For these reasons, there has been recent growth in the field of invasion biology as scientists work to understand the process of invasion, the changes that invasive species cause to their recipient ecosystems, and the ways that the problems of invasive species can be reduced. This review covers the process and drivers of species invasions in Europe, the socio-economic factors that make some regions particularly strongly invaded, and the ecological factors that make some species particularly invasive. We describe the impacts of invasive species in Europe, the difficulties involved in reducing these impacts, and explain the policy options currently being considered. We outline the reasons that invasive species create unique policy challenges, and suggest some rules of thumb for designing and implementing management programs. If new management programs are not enacted in Europe, it is inevitable that more invasive species will arrive, and that the total economic, environmental, and human health impacts from these species will continue to grow.

Collaboration


Dive into the Ingolf Kühn's collaboration.

Top Co-Authors

Avatar

Stefan Klotz

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Petr Pyšek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Josef Settele

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Oliver Schweiger

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Marten Winter

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Jan Pergl

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Montserrat Vilà

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Bacher

University of Fribourg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge