Jan Zarzycki
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Zarzycki.
Journal of Biological Chemistry | 2014
Patrick M. Shih; Jan Zarzycki; Krishna K. Niyogi; Cheryl A. Kerfeld
Background: Photorespiration limits carbon fixation. Results: Heterologous expression and functional activity of six enzymes from the 3-hydroxypropionate bi-cycle are demonstrated in cyanobacteria. Conclusion: A synthetic CO2-fixing photorespiratory bypass can be introduced into cyanobacteria. Significance: The results lay the foundation for expressing an alternative CO2 fixation pathway in cyanobacteria, algae, and plants. Global photosynthetic productivity is limited by the enzymatic assimilation of CO2 into organic carbon compounds. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the carboxylating enzyme of the Calvin-Benson cycle, poorly discriminates between CO2 and O2, leading to photorespiration and the loss of fixed carbon and nitrogen. With the advent of synthetic biology, it is now feasible to design, synthesize, and introduce biochemical pathways in vivo. We engineered a synthetic photorespiratory bypass based on the 3-hydroxypropionate bi-cycle into the model cyanobacterium, Synechococcus elongatus sp. PCC 7942. The heterologously expressed cycle is designed to function as both a photorespiratory bypass and an additional CO2-fixing pathway, supplementing the Calvin-Benson cycle. We demonstrate the function of all six introduced enzymes and identify bottlenecks to be targeted in subsequent bioengineering. These results have implications for efforts to improve photosynthesis and for the “green” production of high value products of biotechnological interest.
Current Opinion in Chemical Biology | 2016
Tobias J. Erb; Jan Zarzycki
There is an urgent need to improve agricultural productivity to secure future food and biofuel supply. Here, we summarize current approaches that aim at improving photosynthetic CO2-fixation. We critically review, compare and comment on the four major lines of research towards this aim, which focus on (i) improving RubisCO, the CO2-fixing enzyme in photosynthesis, (ii) implementing CO2-concentrating mechanisms, (iii) establishing synthetic photorespiration bypasses, and (iv) engineering synthetic CO2-fixation pathways.
Journal of the American Chemical Society | 2016
Clément Aussignargues; Maria-Eirini Pandelia; Markus Sutter; Jefferson S. Plegaria; Jan Zarzycki; Aiko Turmo; Jingcheng Huang; Daniel C. Ducat; Eric L. Hegg; Brian R. Gibney; Cheryl A. Kerfeld
Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of -370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.
Photosynthesis Research | 2015
Sandeep B. Gaudana; Jan Zarzycki; Vamsi K. Moparthi; Cheryl A. Kerfeld
Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci:
Applied and Environmental Microbiology | 2015
Jan Zarzycki; Onur Erbilgin; Cheryl A. Kerfeld
Scientific Reports | 2017
Jan Zarzycki; Markus Sutter; Niña Socorro Cortina; Tobias J. Erb; Cheryl A. Kerfeld
{\text{HCO}}_{3}^{ - }
BMC Structural Biology | 2013
Jan Zarzycki; Cheryl A. Kerfeld
Journal of Bacteriology | 2017
Farshad Borjian; Jing Han; Jing Hou; Hua Xiang; Jan Zarzycki; Ivan A. Berg
HCO3- and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.
Nature Chemical Biology | 2018
Iria Bernhardsgrütter; Bastian Vögeli; Tristan Wagner; Dominik M. Peter; Niña Socorro Cortina; Jörg Kahnt; Gert Bange; Sylvain Engilberge; Eric Girard; François Riobé; Olivier Maury; Seigo Shima; Jan Zarzycki; Tobias J. Erb
ABSTRACT Bacterial microcompartments (BMCs) are proteinaceous organelles encapsulating enzymes that catalyze sequential reactions of metabolic pathways. BMCs are phylogenetically widespread; however, only a few BMCs have been experimentally characterized. Among them are the carboxysomes and the propanediol- and ethanolamine-utilizing microcompartments, which play diverse metabolic and ecological roles. The substrate of a BMC is defined by its signature enzyme. In catabolic BMCs, this enzyme typically generates an aldehyde. Recently, it was shown that the most prevalent signature enzymes encoded by BMC loci are glycyl radical enzymes, yet little is known about the function of these BMCs. Here we characterize the glycyl radical enzyme-associated microcompartment (GRM) loci using a combination of bioinformatic analyses and active-site and structural modeling to show that the GRMs comprise five subtypes. We predict distinct functions for the GRMs, including the degradation of choline, propanediol, and fuculose phosphate. This is the first family of BMCs for which identification of the signature enzyme is insufficient for predicting function. The distinct GRM functions are also reflected in differences in shell composition and apparently different assembly pathways. The GRMs are the counterparts of the vitamin B12-dependent propanediol- and ethanolamine-utilizing BMCs, which are frequently associated with virulence. This study provides a comprehensive foundation for experimental investigations of the diverse roles of GRMs. Understanding this plasticity of function within a single BMC family, including characterization of differences in permeability and assembly, can inform approaches to BMC bioengineering and the design of therapeutics.
Journal of Biological Chemistry | 2017
Thomas Schwander; Richard McLean; Jan Zarzycki; Tobias J. Erb
Many bacteria encode proteinaceous bacterial microcompartments (BMCs) that encapsulate sequential enzymatic reactions of diverse metabolic pathways. Well-characterized BMCs include carboxysomes for CO2-fixation, and propanediol- and ethanolamine-utilizing microcompartments that contain B12-dependent enzymes. Genes required to form BMCs are typically organized in gene clusters, which promoted their distribution across phyla by horizontal gene transfer. Recently, BMCs associated with glycyl radical enzymes (GREs) were discovered; these are widespread and comprise at least three functionally distinct types. Previously, we predicted one type of these GRE-associated microcompartments (GRMs) represents a B12-independent propanediol-utilizing BMC. Here we functionally and structurally characterize enzymes of the GRM of Rhodopseudomonas palustris BisB18 and demonstrate their concerted function in vitro. The GRM signature enzyme, the GRE, is a dedicated 1,2-propanediol dehydratase with a new type of intramolecular encapsulation peptide. It forms a complex with its activating enzyme and, in conjunction with an aldehyde dehydrogenase, converts 1,2-propanediol to propionyl-CoA. Notably, homologous GRMs are also encoded in pathogenic Escherichia coli strains. Our high-resolution crystal structures of the aldehyde dehydrogenase lead to a revised reaction mechanism. The successful in vitro reconstitution of a part of the GRM metabolism provides insights into the metabolic function and steps in the assembly of this BMC.