Matthew T. Wolf
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew T. Wolf.
Acta Biomaterialia | 2012
Bryan N. Brown; Ricardo Londono; Stephen Tottey; Li Zhang; Kathryn A. Kukla; Matthew T. Wolf; Kerry A. Daly; Janet E. Reing; Stephen F. Badylak
Macrophages have been classified as having plastic phenotypes which exist along a spectrum between M1 (classically activated; pro-inflammatory) and M2 (alternatively activated; regulatory, homeostatic). To date, the effects of polarization towards an M1 or M2 phenotype have been studied largely in the context of response to pathogen or cancer. Recently, M1 and M2 macrophages have been shown to play distinct roles in tissue remodeling following injury. In the present study, the M1/M2 paradigm was utilized to examine the role of macrophages in the remodeling process following implantation of 14 biologically derived surgical mesh materials in the rat abdominal wall. In situ polarization of macrophages responding to the materials was examined and correlated to a quantitative measure of the observed tissue remodeling response to determine whether macrophage polarization is an accurate predictor of the ability of a biologic scaffold to promote constructive tissue remodeling. Additionally the ability of M1 and M2 macrophages to differentially recruit progenitor-like cells in vitro, which are commonly observed to participate in the remodeling of those ECM scaffolds which have a positive clinical outcome, was examined as a possible mechanism underlying the differences in the observed remodeling responses. The results of the present study show that there is a strong correlation between the early macrophage response to implanted materials and the outcome of tissue remodeling. Increased numbers of M2 macrophages and higher ratios of M2:M1 macrophages within the site of remodeling at 14 days were associated with more positive remodeling outcomes (r(2)=0.525-0.686, p<0.05). Further, the results of the present study suggest that the constructive remodeling outcome may be due to the recruitment and survival of different cell populations to the sites of remodeling associated with materials that elicit an M1 vs. M2 response. Both M2 and M0 macrophage conditioned media were shown to have higher chemotactic activities than media conditioned by M1 macrophages (p<0.05). A more thorough understanding of these issues will logically influence the design of next generation biomaterials and the development of regenerative medicine strategies for the formation of functional host tissues.
Biomaterials | 2010
Janet E. Reing; Bryan N. Brown; Kerry A. Daly; John M. Freund; Thomas W. Gilbert; Susan X. Hsiong; Alexander Huber; Karen E. Kullas; Stephen Tottey; Matthew T. Wolf; Stephen F. Badylak
Biologic materials from various species and tissues are commonly used as surgical meshes or scaffolds for tissue reconstruction. Extracellular matrix (ECM) represents the secreted product of the cells comprising each tissue and organ, and therefore provides a unique biologic material for selected regenerative medicine applications. Minimal disruption of ECM ultrastructure and content during tissue processing is typically desirable. The objective of this study was to systematically evaluate effects of commonly used tissue processing steps upon porcine dermal ECM scaffold composition, mechanical properties, and cytocompatibility. Processing steps evaluated included liming and hot water sanitation, trypsin/SDS/TritonX-100 decellularization, and trypsin/TritonX-100 decellularization. Liming decreased the growth factor and glycosaminoglycan content, the mechanical strength, and the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for all). Hot water sanitation treatment decreased only the growth factor content of the ECM (p ≤ 0.05). Trypsin/SDS/TritonX-100 decellularization decreased the growth factor content and the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for both). Trypsin/Triton X-100 decellularization also decreased the growth factor content of the ECM but increased the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for both). We conclude that processing steps evaluated in the present study affect content, mechanical strength, and/or cytocompatibility of the resultant porcine dermal ECM, and therefore care must be taken in choosing appropriate processing steps to maintain the beneficial effects of ECM in biologic scaffolds.
Science Translational Medicine | 2014
Brian M. Sicari; J. Peter Rubin; Christopher L. Dearth; Matthew T. Wolf; Fabrisia Ambrosio; Michael L. Boninger; Neill J. Turner; Douglas J. Weber; Tyler Simpson; Aaron Wyse; Elke H.P. Brown; Jenna L. Dziki; Lee E. Fisher; Spencer A. Brown; Stephen F. Badylak
Scaffolds composed of cell-free extracellular matrix promote de novo formation of functional skeletal muscle tissue in sites of volumetric muscle loss. Cell-Free Matrix Refills Muscle In traumatic accidents, or even in surgery, large amounts of skeletal muscle can be lost, resulting in pain and loss of function. Although muscle has the ability to regenerate naturally, it cannot refill massive defects, such as those seen in volumetric muscle loss (VML). In response, Sicari and colleagues devised a biomaterial scaffold that can be surgically implanted at the site of VML, encouraging local muscle regeneration and improving function in both mice and humans. The biomaterial used in this study was made up of bladder tissue that had been stripped of cells, leaving behind only the protein scaffold called the extracellular matrix (ECM). Sicari et al. first tested it in a mouse model of VML. In mice treated with ECM, they saw signs of new skeletal muscle formation, characterized by muscle markers desmin and myosin heavy chain, as well as striated (striped) tissue organization. The new muscle also appeared to be innervated, which is necessary for function. The authors translated this preclinical work into a clinical study of five patients with VML and saw outcomes similar to the mice. Six months after ECM implantation at the site of muscle loss, all patients showed signs of new muscle and blood vessels. Three of the five patients showed 20% or greater improvement in limb strength during physical therapy. The two patients without functional changes did report improvements in nonfunctional tasks, such as balance, as well as an improvement in quality of life. Because of the widespread availability and known safety of cell-free ECM-based materials, the approach described by Sicari et al. may translate to regeneration of other human tissues in addition to muscle. Biologic scaffolds composed of naturally occurring extracellular matrix (ECM) can provide a microenvironmental niche that alters the default healing response toward a constructive and functional outcome. The present study showed similarities in the remodeling characteristics of xenogeneic ECM scaffolds when used as a surgical treatment for volumetric muscle loss in both a preclinical rodent model and five male patients. Porcine urinary bladder ECM scaffold implantation was associated with perivascular stem cell mobilization and accumulation within the site of injury, and de novo formation of skeletal muscle cells. The ECM-mediated constructive remodeling was associated with stimulus-responsive skeletal muscle in rodents and functional improvement in three of the five human patients.
Biomaterials | 2012
Matthew T. Wolf; Kerry A. Daly; Scott A. Johnson; Christopher A. Carruthers; Antonio D'Amore; Shailesh P. Nagarkar; Sachin S. Velankar; Stephen F. Badylak
The ECM of mammalian tissues has been used as a scaffold to facilitate the repair and reconstruction of numerous tissues. Such scaffolds are prepared in many forms including sheets, powders, and hydrogels. ECM hydrogels provide advantages such as injectability, the ability to fill an irregularly shaped space, and the inherent bioactivity of native matrix. However, material properties of ECM hydrogels and the effect of these properties upon cell behavior are neither well understood nor controlled. The objective of this study was to prepare and determine the structure, mechanics, and the cell response in vitro and in vivo of ECM hydrogels prepared from decellularized porcine dermis and urinary bladder tissues. Dermal ECM hydrogels were characterized by a more dense fiber architecture and greater mechanical integrity than urinary bladder ECM hydrogels, and showed a dose dependent increase in mechanical properties with ECM concentration. In vitro, dermal ECM hydrogels supported greater C2C12 myoblast fusion, and less fibroblast infiltration and less fibroblast mediated hydrogel contraction than urinary bladder ECM hydrogels. Both hydrogels were rapidly infiltrated by host cells, primarily macrophages, when implanted in a rat abdominal wall defect. Both ECM hydrogels degraded by 35 days in vivo, but UBM hydrogels degraded more quickly, and with greater amounts of myogenesis than dermal ECM. These results show that ECM hydrogel properties can be varied and partially controlled by the scaffold tissue source, and that these properties can markedly affect cell behavior.
Biomaterials | 2012
Matthew T. Wolf; Kerry A. Daly; Janet E. Reing; Stephen F. Badylak
Biologic scaffolds prepared from the extracellular matrix (ECM) of decellularized mammalian tissues have been shown to facilitate constructive remodeling in injured tissues such as skeletal muscle, the esophagus, and lower urinary tract, among others. The ECM of every tissue has a unique composition and structure that likely has direct effects on the host response and it is plausible that ECM harvested from a given tissue would provide distinct advantages over ECM harvested from nonhomologous tissues. For example, a tissue specific muscle ECM scaffold may be more suitable for constructive remodeling of skeletal muscle than non-homologous ECM tissue sources. The present study describes an enzymatic and chemical decellularization process for isolating skeletal muscle ECM scaffolds using established decellularization criteria and characterized the structure and chemical composition of the resulting ECM. The results were compared to those from a non-muscle ECM derived from small intestine (SIS). Muscle ECM was shown to contain growth factors, glycosaminoglycans, and basement membrane structural proteins which differed from those present in SIS. Myogenic cells survived and proliferated on muscle ECM scaffolds in vitro, and when implanted in a rat abdominal wall injury model in vivo was shown to induce a constructive remodeling response associated with scaffold degradation and myogenesis in the implant area; however, the remodeling outcome did not differ from that induced by SIS by 35 days post surgery. These results suggest that superior tissue remodeling outcomes are not universally dependent upon homologous tissue derived ECM scaffold materials.
Biomaterials | 2013
Christopher J. Medberry; Peter M. Crapo; Bernard F. Siu; Christopher A. Carruthers; Matthew T. Wolf; Shailesh P. Nagarkar; Vineet Agrawal; Kristen E. Jones; Jeremy Kelly; Scott A. Johnson; Sachin S. Velankar; Simon C. Watkins; Michel Modo; Stephen F. Badylak
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair.
Biomaterials | 2014
Matthew T. Wolf; Christopher L. Dearth; Christian A. Ranallo; Samuel T. LoPresti; Lisa E. Carey; Kerry A. Daly; Bryan N. Brown; Stephen F. Badylak
The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.
Biomaterials | 2014
Denver M. Faulk; Ricardo Londono; Matthew T. Wolf; Christian A. Ranallo; Christopher A. Carruthers; Justin D. Wildemann; Christopher L. Dearth; Stephen F. Badylak
Polypropylene has been used as a surgical mesh material for several decades. This non-degradable synthetic polymer provides mechanical strength, a predictable host response, and its use has resulted in reduced recurrence rates for ventral hernia and pelvic organ prolapse. However, polypropylene and similar synthetic materials are associated with a chronic local tissue inflammatory response and dense fibrous tissue deposition. These outcomes have prompted variations in mesh design to minimize the surface area interface and increase integration with host tissue. In contrast, biologic scaffold materials composed of extracellular matrix (ECM) are rapidly degraded in-vivo and are associated with constructive tissue remodeling and minimal fibrosis. The objective of the present study was to assess the effects of an ECM hydrogel coating on the long-term host tissue response to polypropylene mesh in a rodent model of abdominal muscle injury. At 14 days post implantation, the ECM coated polypropylene mesh devices showed a decreased inflammatory response as characterized by the number and distribution of M1 macrophages (CD86+/CD68+) around mesh fibers when compared to the uncoated mesh devices. At 180 days the ECM coated polypropylene showed decreased density of collagen and amount of mature type I collagen deposited between mesh fibers when compared to the uncoated mesh devices. This study confirms and extends previous findings that an ECM coating mitigates the chronic inflammatory response and associated scar tissue deposition characteristic of polypropylene.
Journal of Biomedical Materials Research Part A | 2014
Matthew T. Wolf; Christopher A. Carruthers; Christopher L. Dearth; Peter M. Crapo; Alexander Huber; Olivia A. Burnsed; Ricardo Londono; Scott A. Johnson; Kerry A. Daly; Elizabeth C. Stahl; John M. Freund; Christopher J. Medberry; Lisa E. Carey; Alejandro Nieponice; Nicholas J. Amoroso; Stephen F. Badylak
Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors that contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explanation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. This study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model.
Tissue Engineering Part C-methods | 2011
Kerry A. Daly; Matthew T. Wolf; Scott A. Johnson; Stephen F. Badylak
Peripheral compartment syndrome (PCS) has a complex etiology, with limited treatment options and high patient morbidity. Animal models of PCS have been hampered by differences in cross-species anatomy, physiology, and the relative rarity of the naturally occurring syndrome in animals. In the present study, the combination of saline infusion with intermittent crushing of skeletal muscle consistently caused increased intracompartmental pressure, hypocalemia, and hypercreatinine-phophokinasemia, signs diagnostic of PCS. This method was used to evaluate both the standard PCS treatment, specifically a fasciotomy, and a regenerative medicine approach for treatment-consisting of a fasciotomy with local administration of a biologic scaffold material composed of porcine small intestinal submucosa extracellular matrix (SIS-ECM). The use of this SIS-ECM scaffold in conjunction with a fasciotomy was associated with myogenesis and constructive tissue remodeling in the SIS-ECM-treated animals. At 1 and 3 months after treatment innervated muscle tissue was present at the site of injury. No myogenesis was present in the fasciotomy only treated animals. RAM11+ macrophages, which are associated with constructive tissue remodeling, were present within the injury site in the SIS-ECM-treated animals at 1 month. The present study provides a reproducible animal model with which to study PCS, and shows the potential of a regenerative medicine approach to PCS treatment.