Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet E. Simpson is active.

Publication


Featured researches published by Janet E. Simpson.


Journal of Biological Chemistry | 2007

Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3- cotransporter

Lara R. Gawenis; Emily M. Bradford; Vikram Prasad; John N. Lorenz; Janet E. Simpson; Lane L. Clarke; Alison L. Woo; Christina Grisham; L. Philip Sanford; Thomas Doetschman; Marian L. Miller; Gary E. Shull

The NBC1 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{Na}^{+}{/}\mathrm{HCO}_{3}^{-}\) \end{document} cotransporter is expressed in many tissues, including kidney and intestinal epithelia. NBC1 mutations cause proximal renal tubular acidosis in humans, consistent with its role in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HCO}_{3}^{-}\) \end{document} absorption in the kidney. In intestinal and colonic epithelia, NBC1 localizes to basolateral membranes and is thought to function in anion secretion. To test the hypothesis that NBC1 plays a role in transepithelial \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HCO}_{3}^{-}\) \end{document} secretion in the intestinal tract, null mutant (NBC1-/-) mice were prepared by targeted disruption of its gene (Slc4a4). NBC1-/- mice exhibited severe metabolic acidosis, growth retardation, reduced plasma Na+, hyperal-dosteronism, splenomegaly, abnormal dentition, intestinal obstructions, and death before weaning. Intracellular pH (pHi) was not altered in cAMP-stimulated epithelial cells of NBC1-/- cecum, but pHi regulation during sodium removal and readdition was impaired. Bioelectric measurements of NBC1-/- colons revealed increased amiloride-sensitive Na+ absorption. In Ringer solution containing both Cl- and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HCO}_{3}^{-}\) \end{document}, the magnitude of cAMP-stimulated anion secretion was normal in NBC1-/- distal colon but increased in proximal colon, with the increase largely supported by enhanced activity of the basolateral NKCC1 Na+-K+-2Cl- cotransporter. Anion substitution studies in which carbonic anhydrase was inhibited and transepithelial anion conductance was limited to \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HCO}_{3}^{-}\) \end{document} revealed a sharp decrease in both cAMP-stimulated \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HCO}_{3}^{-}\) \end{document} secretion and SITS-sensitive current in NBC1-/- proximal colon. These results are consistent with the known function of NBC1 in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HCO}_{3}^{-}\) \end{document} absorption in the kidney and demonstrate that NBC1 activity is a component of the basolateral mechanisms for \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HCO}_{3}^{-}\) \end{document} uptake during cAMP-stimulated anion secretion in the proximal colon.


Gastroenterology | 2008

Down-regulated in Adenoma Cl/HCO3 Exchanger Couples With Na/H Exchanger 3 for NaCl Absorption in Murine Small Intestine

Nancy M. Walker; Janet E. Simpson; Pei–Fen Yen; Ravinder K. Gill; Elizabeth V. Rigsby; Jennifer M. Brazill; Pradeep K. Dudeja; Clifford W. Schweinfest; Lane L. Clarke

BACKGROUND & AIMS Electroneutral NaCl absorption across small intestine contributes importantly to systemic fluid balance. Disturbances in this process occur in both obstructive and diarrheal diseases, eg, cystic fibrosis, secretory diarrhea. NaCl absorption involves coupling of Cl(-)/HCO(3)(-) exchanger(s) primarily with Na(+)/H(+) exchanger 3 (Nhe3) at the apical membrane of intestinal epithelia. Identity of the coupling Cl(-)/HCO(3)(-) exchanger(s) was investigated using mice with gene-targeted knockout (KO) of Cl(-)/HCO(3)(-) exchangers: Slc26a3, down-regulated in adenoma (Dra) or Slc26a6, putative anion transporter-1 (Pat-1). METHODS Intracellular pH (pH(i)) of intact jejunal villous epithelium was measured by ratiometric microfluoroscopy. Ussing chambers were used to measure transepithelial (22)Na(36)Cl flux across murine jejunum, a site of electroneutral NaCl absorption. Expression was estimated using immunofluorescence and quantitative polymerase chain reaction. RESULTS Basal pH(i) of DraKO epithelium, but not Pat-1KO epithelium, was alkaline, whereas pH(i) in the Nhe3KO was acidic relative to wild-type. Altered pH(i) was associated with robust Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange activity in the DraKO and Nhe3KO villous epithelium, respectively. Contrary to genetic ablation, pharmacologic inhibition of Nhe3 in wild-type did not alter pH(i) but coordinately inhibited Dra. Flux studies revealed that Cl(-) absorption was essentially abolished (>80%) in the DraKO and little changed (<20%) in the Pat-1KO jejunum. Net Na(+) absorption was unaffected. Immunofluorescence demonstrated modest Dra expression in the jejunum relative to large intestine. Functional and expression studies did not indicate compensatory changes in relevant transporters. CONCLUSIONS These studies provide functional evidence that Dra is the major Cl(-)/HCO(3)(-) exchanger coupled with Nhe3 for electroneutral NaCl absorption across mammalian small intestine.


Gastroenterology | 2009

Role of Down-Regulated in Adenoma Anion Exchanger in HCO3 - Secretion Across Murine Duodenum

Nancy M. Walker; Janet E. Simpson; Jennifer M. Brazill; Ravinder K. Gill; Pradeep K. Dudeja; Clifford W. Schweinfest; Lane L. Clarke

BACKGROUND & AIMS The current model of duodenal HCO(3)(-) secretion proposes that basal secretion results from Cl(-)/HCO(3)(-) exchange, whereas cyclic adenosine monophosphate (cAMP)-stimulated secretion depends on a cystic fibrosis transmembrane conductance regulator channel (Cftr)-mediated HCO(3)(-) conductance. However, discrepancies in applying the model suggest that Cl(-)/HCO(3)(-) exchange also contributes to cAMP-stimulated secretion. Of 2 candidate Cl(-)/HCO(3)(-) exchangers, studies of putative anion transporter-1 knockout (KO) mice find little contribution of putative anion transporter-1 to basal or cAMP-stimulated secretion. Therefore, the role of down-regulated in adenoma (Dra) in duodenal HCO(3)(-) secretion was investigated using DraKO mice. METHODS Duodenal HCO(3)(-) secretion was measured by pH stat in Ussing chambers. Apical membrane Cl(-)/HCO(3)(-) exchange was measured by microfluorometry of intracellular pH in intact villous epithelium. Dra expression was assessed by immunofluorescence. RESULTS Basal HCO(3)(-) secretion was reduced approximately 55%-60% in the DraKO duodenum. cAMP-stimulated HCO(3)(-) secretion was reduced approximately 50%, but short-circuit current was unchanged, indicating normal Cftr activity. Microfluorimetry of villi demonstrated that Dra is the dominant Cl(-)/HCO(3)(-) exchanger in the lower villous epithelium. Dra expression increased from villous tip to crypt. DraKO and wild-type villi also demonstrated regulation of apical Na(+)/H(+) exchange by Cftr-dependent cell shrinkage during luminal Cl(-) substitution. CONCLUSIONS In murine duodenum, Dra Cl(-)/HCO(3)(-) exchange is concentrated in the lower crypt-villus axis where it is subject to Cftr regulation. Dra activity contributes most basal HCO(3)(-) secretion and approximately 50% of cAMP-stimulated HCO(3)(-) secretion. Dra Cl(-)/HCO(3)(-) exchange should be considered in efforts to normalize HCO(3)(-) secretion in duodenal disorders such as ulcer disease and cystic fibrosis.


Gastroenterology | 2003

cAMP inhibition of murine intestinal Na/H exchange requires CFTR-mediated cell shrinkage of villus epithelium.

Lara R. Gawenis; Craig L. Franklin; Janet E. Simpson; Bradley A Palmer; Nancy M. Walker; Tarra M Wiggins; Lane L. Clarke

BACKGROUND AND AIMS Unlike the intestine of normal subjects, small-intestinal epithelia of cystic fibrosis patients and cystic fibrosis transmembrane conductance regulator protein-null (CFTR(-)) mice do not respond to stimulation of intracellular cyclic adenosine monophosphate with inhibition of electroneutral NaCl absorption. Because CFTR-mediated anion secretion has been associated with changes in crypt cell volume, we hypothesized that CFTR-mediated cell volume reduction in villus epithelium is required for intracellular cyclic adenosine monophosphate inhibition of Na(+)/H(+) exchanger (primarily Na(+)/H(+) exchanger 3) activity in the proximal small intestine. METHODS Transepithelial (22)Na flux across the jejuna of CFTR(+), CFTR(-), the basolateral membrane Na(+)/K(+)/2Cl(-) co-transporter protein NKCC1(+), and NKCC1(-) mice were correlated with changes in epithelial cell volume of the midvillus region. RESULTS Stimulation of intracellular cyclic adenosine monophosphate resulted in cessation of Na(+)/H(+) exchanger-mediated Na(+) absorption (J(ms)(NHE)) in CFTR(+) jejunum but had no effect on J(ms)(NHE) across CFTR(-) jejunum. Cell volume indices indicated an approximately 30% volume reduction of villus epithelial cells in CFTR(+) jejunum but no changes in CFTR(-) epithelium after intracellular cyclic adenosine monophosphate stimulation. In contrast, cell shrinkage induced by hypertonic medium inhibited J(ms)(NHE) in both CFTR(+) and CFTR(-) mice. Bumetanide treatment to inhibit Cl(-) secretion by blockade of the Na(+)/K(+)/2Cl(-) co-transporter, NKCC1, of stimulated CFTR(+) jejunum prevented maximal volume reduction of villus epithelium and recovered approximately 40% of J(ms)(NHE). Likewise, J(ms)(NHE) and cell volume were unaffected by intracellular cyclic adenosine monophosphate stimulation in NKCC1(-) jejuna. CONCLUSIONS These findings show a previously unrecognized role of functional CFTR expressed in villus epithelium: regulation of Na(+)/H(+) exchanger 3-mediated Na(+) absorption by alteration of epithelial cell volume.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function.

Adam J. Moeser; Prashant K. Nighot; Kathleen A. Ryan; Janet E. Simpson; Lane L. Clarke

Ischemic injury induces breakdown of the intestinal barrier. Recent studies in porcine postischemic tissues indicate that inhibition of NHE2 results in enhanced recovery of barrier function in vitro via a process involving interepithelial tight junctions. To further study this process, recovery of barrier function was assessed in wild-type (NHE2(+/+)) and NHE2(-/-) mice in vivo and wild-type mice in vitro. Mice were subjected to complete mesenteric ischemia in vivo, after which barrier function was measured by blood-to-lumen mannitol clearance over a 3-h recovery period or measurement of transepithelial electrical resistance (TER) in Ussing chambers immediately following ischemia. Tissues were assessed for expression of select junctional proteins. Compared with NHE2(+/+) mice, NHE2(-/-) mice had greater intestinal permeability during the postischemic recovery process. In contrast to prior porcine studies, pharmacological inhibition of NHE2 in postischemic tissues from wild-type mice also resulted in significant reductions in TER. Mucosa from NHE2(-/-) mice displayed a shift of occludin and claudin-1 expression to the Triton-X-soluble membrane fractions and showed disruption of occludin and claudin-1 localization patterns following injury. This was qualitatively and quantitatively recovered in NHE2(+/+) mice compared with NHE2(-/-) mice by the end of the 3-h recovery period. Serine phosphorylation of occludin and claudin-1 was downregulated in NHE2(-/-) postischemia compared with wild-type mice. These data indicate an important role for NHE2 in recovery of barrier function in mice via a mechanism involving tight junctions.


American Journal of Physiology-cell Physiology | 2011

Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange.

Seth L. Alper; Andrew K. Stewart; David H. Vandorpe; Jeffrey S. Clark; R. Zachary Horack; Janet E. Simpson; Nancy M. Walker; Lane L. Clarke

The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl(-)/1HCO(3)(-) exchange suggests a required revision of classical concepts of electroneutral Cl(-) transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl(-)/HCO(3)(-) activity on apical membrane potential (V(a)) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl(-)/(OH(-))HCO(3)(-) exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo (36)Cl(-) fluxes and microfluorometry revealed that cecal Cl(-)/HCO(3)(-) exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline V(a) of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl(-) substitution. Subsequent studies indicated that Cl(-)-dependent V(a) depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl(-) for extracellular HCO(3)(-) is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl(-) removal or pharmacological blockade. Further, Dra-dependent (36)Cl(-) efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl(-)/1HCO(3)(-) exchange; and 2) acute induction of Dra Cl(-)/HCO(3)(-) exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO(3)(-) secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Putative anion transporter-1 (Pat-1, Slc26a6) contributes to intracellular pH regulation during H+-dipeptide transport in duodenal villous epithelium

Janet E. Simpson; Nancy M. Walker; Claudiu T. Supuran; Manoocher Soleimani; Lane L. Clarke

The majority of dietary amino acids are absorbed via the H(+)-di-/tripeptide transporter Pept1 of the small intestine. Proton influx via Pept1 requires maintenance of intracellular pH (pH(i)) to sustain the driving force for peptide absorption. The apical membrane Na(+)/H(+) exchanger Nhe3 plays a major role in minimizing epithelial acidification during H(+)-di-/tripeptide absorption. However, the contributions of HCO(3)(-)-dependent transporters to this process have not been elucidated. In this study, we investigate the role of putative anion transporter-1 (Pat-1), an apical membrane anion exchanger, in epithelial pH(i) regulation during H(+)-peptide absorption. Using wild-type (WT) and Pat-1(-) mice, Ussing chambers were employed to measure the short-circuit current (I(sc)) associated with Pept1-mediated glycyl-sarcosine (Gly-Sar) absorption. Microfluorometry was used to measure pH(i) and Cl(-)/HCO(3)(-) exchange in the upper villous epithelium. In CO(2)/HCO(3)(-)-buffered Ringers, WT small intestine showed significant Gly-Sar-induced I(sc) and efficient pH(i) regulation during pharmacological inhibition of Nhe3 activity. In contrast, epithelial acidification and reduced I(sc) response to Gly-Sar exposure occurred during pharmacological inhibition of Cl(-)/HCO(3)(-) exchange and in the Pat-1(-) intestine. Pat-1 interacts with carbonic anhydrase II (CAII), and studies using CAII(-) intestine or the pharmacological inhibitor methazolamide on WT intestine resulted in increased epithelial acidification during Gly-Sar exposure. Increased epithelial acidification during Gly-Sar exposure also occurred in WT intestine during inhibition of luminal extracellular CA activity. Measurement of Cl(-)/HCO(3)(-) exchange in the presence of Gly-Sar revealed an increased rate of Cl(-)(OUT)/HCO(3)(-)(IN) exchange that was both Pat-1 dependent and CA dependent. In conclusion, Pat-1 Cl(-)/HCO(3)(-) exchange contributes to pH(i) regulation in the villous epithelium during H(+)-dipeptide absorption, possibly by providing a HCO(3)(-) import pathway.


Acta Physiologica | 2011

Functional Activity of Pat-1 (Slc26a6) Cl−/HCO3− Exchange in the Lower Villus Epithelium of Murine Duodenum

Nancy M. Walker; Janet E. Simpson; Erin E. Hoover; Jennifer M. Brazill; Clifford W. Schweinfest; Manoocher Soleimani; Lane L. Clarke

Aims:  The apical membrane anion exchanger putative anion transporter‐1 (Pat‐1) is expressed at significant levels in the lower villus epithelium of murine duodenum. However, previous studies of Cl−/HCO3− exchange in the lower villus have failed to demonstrate Pat‐1 function. Those studies routinely included luminal glucose which induces Na+‐coupled glucose transport and acidifies the villus epithelium. Since Pat‐1 has been proposed to be an electrogenic 1Cl−/2HCO3− exchanger, membrane depolarization or cell acidification during glucose transport may obscure Pat‐1 activity. Therefore, we investigated the effects of luminal glucose on Cl−IN/HCO3−OUT exchange activity in the lower villus epithelium.


Veterinary Clinics of North America: Exotic Animal Practice | 2005

Viral diseases of the rabbit

Aric Krogstad; Janet E. Simpson; Scott W. Korte

Viral disease in the rabbit is encountered infrequently by the clinical practitioner; however, several viral diseases were reported to occur in this species. Viral diseases that are described in the rabbit primarily may affect the integument, gastrointestinal tract or, central nervous system or maybe multi-systemic in nature. Rabbit viral diseases range from oral papillomatosis, with benign clinical signs, to rabbit hemorrhagic disease and myxomatosis, which may result in significant clinical disease and mortality. The wild rabbit may serve as a reservoir for disease transmission for many of these viral agents. In general, treatment of viral disease in the rabbit is supportive in nature.


Gastroenterology | 2009

W1654 Increased Transepithelial Anion Current in the SLC26A3 (Down-Regulated in Adenoma, DRA) Knockout Jejunum Is Not Associated with Loss of Electrogenic C−/HCO3− Exchange

Jennifer M. Brazill; Janet E. Simpson; Nancy M. Walker; Lane L. Clarke

Dra is the major apical membrane Cl/HCO3 exchanger in the murine small intestine. Studies of recombinant DRA have proposed an electrogenic 2Cl:1HCO3 stoichiometry (J. Gen. Physiol. 127: 511, 2006). In Dra knockout jejunum (DraKO), loss of Clabsorption is associated with an increase in the baseline short-circuit current (Isc) that may result from loss of an inward anion current due to electrogenic Cl/HCO3 exchange. Therefore, we investigated the ionic basis of the increased Isc in isolated DraKO jejunal preparations using intracellular pH (pHi) microfluorimetry and Ussing chamber studies. As described previously (Gastroenterology 136: 1645, 2008), pHi of the DraKO villous epithelium was alkaline relative to wild type (WT), ostensibly due to loss of Cl/HCO3 exchange. Studies also revealed little Cl-/OHexchange in villous epithelium by measurements performed in the nominal absence of extracellular HCO3. In Ussing chamber studies, removal of extracellular Cleliminated the elevated baseline Isc whereas removal of extracellular HCO3 had no effect in DraKO jejunum, indicating that Cl/HCO3 exchange was not responsible for the elevated Isc. The contribution of the cystic fibrosis transmembrane conductance regulator (Cftr) anion channel was investigated usingDra/Cftr double knockout micewhich demonstrated a baseline Isc that was reduced by 40% relative to the DraKO jejunum. Epithelial alkalinity in the DraKO jejunal epithelium may increase the electrical gradient for Clsecretion by hyperpolarization secondary to activation of basolateral K+ channels (Am. J. Physiol. 258:C336, 1990). Therefore, epithelial acidification was induced by exposing the luminal surface to pH 6.4 by replacing HCO3 with TES buffer in the presence of 5% CO2: 95% O2. Under this condition, the elevated baseline Isc in the DraKO was abolished. On-going studies are investigating the effect of basolateral K+ channel blockers in the DraKO jejunum. We conclude that the elevated baseline Isc in the DraKO intestine does not result from loss of electrogenic Cl-/ HCO3 exchange but from increased anion secretion associated with epithelial alkalinity that may activate basolateral membrane K+ channels. Supported by NIDDK and the Cystic Fibrosis Foundation.

Collaboration


Dive into the Janet E. Simpson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clifford W. Schweinfest

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary E. Shull

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge