Janet M. Ruth
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janet M. Ruth.
Models for Planning Wildlife Conservation in Large Landscapes | 2009
Jane A. Fitzgerald; Wayne E. Thogmartin; Randy Dettmers; Tim Jones; Christopher Rustay; Janet M. Ruth; Frank R. Thompson; Tom Will
Partners in Flight (PIF), a public–private coalition for the conservation of land birds, has developed one of four international bird conservation plans recognized under the auspices of the North American Bird Conservation Initiative (NABCI). Partners in Flight prioritized species most in need of conservation attention and set range-wide population goals for 448 species of terrestrial birds. Partnerships are now tasked with developing spatially explicit estimates of the distribution, and abundance of priority species across large ecoregions and identifying habitat acreages needed to support populations at prescribed levels. The PIF Five Elements process of conservation design identifies five steps needed to implement all bird conservation at the ecoregional scale. Habitat assessment and landscape characterization describe the current amounts of different habitat types and summarize patch characteristics, and landscape configurations that define the ability of a landscape to sustain healthy bird populations and are a valuable first step to describing the planning area before pursuing more complex species-specific models. Spatially linked database models, landscape-scale habitat suitability models, and statistical models are viable alternatives for predicting habitat suitability or bird abundance across large planning areas to help assess conservation opportunities, design landscapes to meet population objectives, and monitor change in habitat suitability or bird numbers over time.
Journal of Field Ornithology | 2002
Janet M. Ruth; Thomas R. Stanley
Abstract We studied Wilsons Warbler (Wilsonia pusilla) and Yellow Warbler (Dendroica petechia) habitat use in allopatric and sympatric populations in the Rocky Mountains of northern Colorado and southeastern Wyoming in order to better understand the different habitat needs and interactions of these two species. Foraging Wilsons Warblers and Yellow Warblers used very similar habitat, both selecting larger, more open shrubs. In spite of similar foraging habitat, comparisons of habitat use by the two species at the sympatric sites yielded no evidence of foraging habitat partitioning or exclusion. There was evidence of nesting habitat partitioning. Wilsons Warblers nested on the ground, with some evidence that they used smaller, more densely stemmed shrubs under which to nest. Yellow Warblers are shrub nesters and selected larger, more open shrubs in which to nest. Results provide no evidence that Yellow Warblers can be blamed for population declines in Wilsons Warblers.
The Condor | 2012
Janet M. Ruth; Robert H. Diehl; Rodney K. Felix
Abstract. In the arid Southwest, migratory birds are known to use riparian stopover habitats; we know less about how migrants use other habitat types during migratory stopover. Using radar data and satellite land-cover data, we determined the habitats with which birds are associated during migration stopover. Bird densities differed significantly by habitat type at all sites in at least one season. In parts of Arizona and New Mexico upland forest supported high densities of migrants, especially in fall. Developed habitat, in areas with little upland forest, also supported high densities of migrants. Scrub/shrub and grassland habitats supported low to intermediate densities, but because these habitat types dominate the Southwestern landscape, they may provide stopover habitat for larger numbers of migratory birds than previously recognized. These results are complicated by continuing challenges related to target identity (i.e., distinguishing among birds, arthropods and bats). Our results suggest that it is too simplistic to (1) consider the arid West as a largely inhospitable landscape in which there are only relatively small oases of habitat that provide the resources needed by all migrants, (2) think of western riparian and upland forests as supporting the majority of migrants in all cases, and (3) consider a particular habitat unimportant for stopover solely on the basis of low densities of migrants.
Southwestern Naturalist | 2014
Janet M. Ruth; Thomas R. Stanley; Caleb E. Gordon
Abstract We studied associations with winter habitat for seven species of birds, one species-group (eastern and western meadowlarks combined), and total sparrows at seven sites in the semidesert and plains grasslands of southeastern Arizona from 1999–2001, sampling with mist-nets and survey-transects. We measured structure and composition of vegetation, assessing vegetative differences among sites, and modeled associations between indices of avian abundance and six vegetative variables using generalized linear models. For all vegetative variables, there were significant differences among sites. Numbers of northern harriers (Circus cyaneus) were positively associated with total number of sparrows. Indices of abundance for individual species of birds were statistically correlated with various measures of structure and composition of vegetation. In particular, grasshopper (Ammodramus savannarum) and vesper (Pooecetes gramineus) sparrows were negatively associated with amount of bare ground; horned larks (Eremophila alpestris) were negatively associated with vertical grass density; Bairds sparrows (A. bairdii) were negatively associated with shrub density; meadowlarks (Sturnella magna and S. neglecta combined) were positively associated with native grass. Our results suggest that these species would benefit from management of habitat that affects the vegetative characteristics associated with their abundance.
The Condor | 2017
Janet M. Ruth; Susan K. Skagen
ABSTRACT Grassland bird populations are showing some of the greatest rates of decline of any North American birds, prompting measures to protect and improve important habitat. We assessed how vegetation structure and composition, habitat features often targeted for management, affected territory and nest site selection by Grasshopper Sparrows (Ammodramus savannarum ammolegus) in southeastern Arizona. To identify features important to males establishing territories, we compared vegetation characteristics of known territories and random samples on 2 sites over 5 years. We examined habitat selection patterns of females by comparing characteristics of nest sites with territories over 3 years. Males selected territories in areas of sparser vegetation structure and more tall shrubs (>2 m) than random plots on the site with low shrub densities. Males did not select territories based on the proportion of exotic grasses. Females generally located nest sites in areas with lower small shrub (1–2 m tall) densities than territories overall when possible and preferentially selected native grasses for nest construction. Whether habitat selection was apparent depended upon the range of vegetation structure that was available. We identified an upper threshold above which grass structure seemed to be too high and dense for Grasshopper Sparrows. Our results suggest that some management that reduces vegetative structure may benefit this species in desert grasslands at the nest and territory scale. However, we did not assess initial male habitat selection at a broader landscape scale where their selection patterns may be different and could be influenced by vegetation density and structure outside the range of values sampled in this study.
The Condor | 2018
Janet M. Ruth; Susan K. Skagen
ABSTRACT Avian species endemic to desert grasslands of North America contend with significant ecological challenges, including monsoonal rains, droughts, and variable temperatures. These birds have evolved physiological and behavioral means of coping with such extremes, but ongoing changes to temperature and precipitation patterns are affecting their breeding phenology, reproductive success, and population growth rates. We examined how seasonal and daily weather conditions and habitat structure were associated with the nest survival of Arizona Grasshopper Sparrows (Ammodramus savannarum ammolegus) in the semidesert and plains grasslands of southeastern Arizona, USA. The mean ± SE daily survival rate (DSR) of nests was 0.960 ± 0.006, corresponding to overall nest success of 46%. The previous seasons precipitation, large rain events, and nest concealment were the most important factors explaining DSR. Grasshopper Sparrow nest survival decreased with a wetter previous growing season and with large rain events on previous days. Nests that were more concealed had lower survival rates. There was some evidence that nest survival was lower later in the nesting season. In addition, when nest concealment was included in models, there were positive but weak associations between other vegetation variables and DSR—nests with higher visual obstruction at the nest and nest plot scales, and nests that were farther from shrubs >2 m tall, showed higher survival rates. Predation was the major cause of nest failure, suggesting complex interactions among predation, precipitation, and nest concealment. Further, our findings suggest tradeoffs in the potential effects of future climate change on A. s. ammolegus. The increased frequency of extreme storm events predicted for the region may result in reduced nest survival of A. s. ammolegus, but, conversely, lower seasonal precipitation prior to nesting may positively influence nest survival.
Open-File Report | 2005
Janet M. Ruth; Wylie C. Barrow; Richard S. Sojda; Deanna K. Dawson; Robert H. Diehl; Albert Manville; Michael T. Green; David J. Krueper; Scott Johnston
Studies in avian biology | 2008
Rodney K. Felix; Robert H. Diehl; Janet M. Ruth
Open-File Report | 2007
Janet M. Ruth; Albert Manville; Ron Larkin; Wylie C. Barrow; Lori Johnson-Randall; Deanna K. Dawson; Robert H. Diehl; Yufang Wang; Richard S. Sojda; Rafal Angryk; Robert W. Klaver; Reggie Mead; John Paxton; Patricia J. Heglund; Eileen M. Kirsch; Manuel J. Suarez; Larry Robinson; Sidney A. Gauthreaux; Carroll G. Belser; Steven J. Franke; Bruno Bruderer; Jeffrey J. Buler; Frank R. Moore; David S. Mizrahi; Robert Fogg; T. Adam Kelly; Paul M. Cryan; Tim Crum; Terry J. Schuur; Dave Krueper
Fact Sheet | 2008
Janet M. Ruth; Jeffrey J. Buler; Robert H. Diehl; Richard S. Sojda