Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jang Hee Hong is active.

Publication


Featured researches published by Jang Hee Hong.


Nature Communications | 2013

PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65

Tiejun Zhang; Kyeong Ah Park; Yuwen Li; Hee Sun Byun; Juhee Jeon; Yoonjung Lee; Jang Hee Hong; Jin-Man Kim; Song Mei Huang; Seung Won Choi; Seon Hwan Kim; Kyung Cheol Sohn; Hyunju Ro; Ji Hoon Lee; Tao Lu; George R. Stark; Han-Ming Shen; Zheng Gang Liu; Jongsun Park; Gang Min Hur

Constitutive NF-κB activation in cancer cells is caused by defects in the signalling network responsible for terminating the NF-κB response. Here we report that plant homeodomain finger protein 20 (PHF20) maintains NF-κB in an active state in the nucleus by inhibiting the interaction between PP2A and p65. We show that PHF20 induces canonical NF-κB signalling by increasing the DNA-binding activity of NF-κB subunit p65. In PHF20 overexpressing cells, the termination of tumour necrosis factor-induced p65 phosphorylation is impaired whereas upstream signalling events triggered by tumour necrosis factor are unaffected. This effect strictly depends on the interaction between PHF20 and methylated lysine residues of p65, which hinders recruitment of PP2A to p65, thereby maintaining p65 in a phosphorylated state. We further show that PHF20 levels correlate with p65 phosphorylation levels in human glioma specimens. Our work identifies PHF20 as a novel regulator of NF-κB activation and suggests that elevated expression of PHF20 may drive constitutive NF-κB activation in some cancers.


BMC Cancer | 2008

Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC

Young-Rae Kim; Hee Sun Byun; Minho Won; Kyeong Ah Park; Jin-Man Kim; Byung Lyul Choi; Hyunji Lee; Jang Hee Hong; Jongsun Park; Jeong Ho Seok; Dong Wook Kim; Minho Shong; Seung-Kiel Park; Gang Min Hur

BackgroundRET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation.MethodsCancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay.ResultsIn human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC.ConclusionThese findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.


Experimental and Molecular Medicine | 2008

Prevention of TNF-induced necrotic cell death by rottlerin through a Nox1 NADPH oxidase.

Hee Sun Byun; Minho Won; Kyeong Ah Park; Young-Rae Kim; Byung Lyul Choi; Hyunji Lee; Jang Hee Hong; Longzhen Piao; Jongsun Park; Jin-Man Kim; Gi Ryang Kweon; Sung Hyun Kang; Jin Han; Gang Min Hur

Previous studies have demonstrated that rottlerin, a specific PKCδ inhibitor, potentiates death receptormediated apoptosis through a cytochrome c-dependent or -independent pathway. However, its ability to regulate necrotic cell death, as well as the underlying mechanism, remains unknown. We found that in murine fibrosarcoma L929 cells, treatment with rottlerin protected the cells against TNF-induced necrosis, whereas it sensitized the cells to apoptosis induced by co-treatment with Hsp90 inhibitor geldanamycin and TNF, in a manner independent of its ability to inhibit PKC-δ. TNF treatment induced rapid accumulation of mitochondrial superoxide (O2-) through the Nox1 NADPH oxidase when cells undergo necrosis. Moreover, pretreatment with rottlerin failed to induce the GTP-bound form of small GTPase Rac1 by TNF treatment, and subsequently suppressed mitochondrial O2- production and poly(ADP-ribose) polymerase activation, thus inhibiting necrotic cell death. Therefore, our study suggests that Nox1 NADPH oxidase is a new molecular target for anti-necrotic activity of rottlerin upon death-receptor ligation.


Journal of Hepatology | 2009

Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: Implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration

Minho Won; Kyeong Ah Park; Hee Sun Byun; Young-Rae Kim; Byung Lyul Choi; Jang Hee Hong; Jongsun Park; Jeong Ho Seok; Young-Ho Lee; Chung-Hyun Cho; In Sang Song; Yong Kyung Kim; Han-Ming Shen; Gang Min Hur

BACKGROUND/AIMS Based on the observation of biphasic induction of SGK1 expression in the regenerating liver, we investigated the role of SGK1 in the regulation of MEK/ERK signaling pathway which plays a crucial role in regulating growth and survival signaling. METHODS To determine the role of SGK1 in the activation of MEK/ERK signaling cascade, we infected primary hepatocytes with recombinant adenoviral vector encoding SGK1, and assessed its effect on the MEK/ERK signaling pathway. RESULTS Partial hepatectomy resulted in the biphasic transcriptional induction of SGK1 in regenerating liver tissues. Infection of primary hepatocytes with an adenoviral vector encoding SGK1 enhanced the ERK phosphorylation under serum-starved conditions and this was blocked by the expression of kinase-dead SGK1. SGK1 was found to physically interact with ERK1/2 as well as MEK1/2. Furthermore, SGK1 mediated the phosphorylation of ERK2 on Ser(29) in a serum-dependent manner. Replacement of Ser(29) to aspartic acid, which mimics the phosphorylation of Ser(29), enhanced the ERK2 activity as well as the MEK/ERK complexes formation. CONCLUSIONS SGK1 expression during liver regeneration is a part of a signaling pathway that is necessary for enhancing ERK signaling activation through modulating the MEK/ERK complex formation.


Biochemical Pharmacology | 2014

Brazilin selectively disrupts proximal IL-1 receptor signaling complex formation by targeting an IKK-upstream signaling components.

Juhee Jeon; Ji Hoon Lee; Kyeong Ah Park; Hee Sun Byun; Hyunji Lee; Yoonjung Lee; Tiejun Zhang; Kidong Kang; Jeong Ho Seok; Hyun-Jung Kwon; Man-Deuk Han; Seong Wook Kang; Jang Hee Hong; Gang Min Hur

The ligation of interleukin-1 receptor (IL-1R) or tumor necrosis factor receptor 1 (TNFR1) induces the recruitment of adaptor proteins and their concomitant ubiquitination to the proximal receptor signaling complex, respectively. Such are upstream signaling events of IKK that play essential roles in NF-κB activation. Thus, the discovery of a substance that would modulate the recruitment of key proximal signaling elements at the upstream level of IKK has been impending in this field of study. Here, we propose that brazilin, an active compound of Caesalpinia sappan L. (Leguminosae), is a potent NF-κB inhibitor that selectively disrupts the formation of the upstream IL-1R signaling complex. Analysis of upstream signaling events revealed that brazilin markedly abolished the IL-1β-induced polyubiquitination of IRAK1 and its interaction with IKK-γ counterpart. Notably, pretreatment of brazilin drastically interfered the recruitment of the receptor-proximal signaling components including IRAK1/4 and TRAF6 onto MyD88 in IL-1R-triggerd NF-κB activation. Interestingly, brazilin did not affect the TNF-induced RIP1 ubiquitination and the recruitment of RIP1 and TRAF2 to TNFR1, suggesting that brazilin is effective in selectively suppressing the proximal signaling complex formation of IL-1R, but not that of TNFR1. Moreover, our findings suggest that such a disruption of IL-1R-proximal complex formation by brazilin is not mediated by affecting the heterodimerization of IL-1R and IL-1RAcP. Taken together, the results suggest that the anti-IKK activity of brazilin is induced by targeting IKK upstream signaling components and subsequently disrupting proximal IL-1 receptor signaling complex formation.


PLOS ONE | 2013

Genome-wide expression profiling of complex regional pain syndrome.

Eun-Heui Jin; Enji Zhang; Youngkwon Ko; Woo Seog Sim; Dong Eon Moon; Keon Jung Yoon; Jang Hee Hong; Won Hyung Lee

Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and p<0.05). Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1), matrix metalloproteinase 9 (MMP9), alanine aminopeptidase N (ANPEP), l-histidine decarboxylase (HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3R), and signal transducer and activator of transcription 3 (STAT3) genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression.


Journal of Ethnopharmacology | 2011

Water extract of Cynanchi atrati Radix regulates inflammation and apoptotic cell death through suppression of IKK-mediated NF-κB signaling.

Juhee Jeon; Kyeong Ah Park; Hyunji Lee; Sanghee Shin; Tiejun Zhang; Minho Won; Hyun Kyung Yoon; Min Kyung Choi; Hyeong Geug Kim; Chang Gue Son; Jang Hee Hong; Gang Min Hur

ETHNOPHARMACOLOGICAL RELEVANCE Cynanchi atrati Radix has been traditionally used as an anti-inflammatory agent to treat febrile diseases, acute urinary infection or subcutaneous pyogenic infection with invasion of the pathogenic factors. AIM OF STUDY Nuclear factor (NF)-κB is a pleiotropic transcriptional factor of many genes involved in inflammatory and anti-apoptotic responses. To identify a novel, potent inhibitor of NF-κB signaling pathway, a plant extract library of traditional oriental medicine was screened for the capability to block the NF-κB activity in cells overexpressing toll-like receptor 4 (TLR4), and then evaluated the anti-inflammatory and pro-apoptotic functions of water extract of Cynanchi atrati Radix (WECR) in macrophages and cancer cells, respectively. MATERIALS AND METHODS The effect of WECR on the proinflammatory mediators (inducible NO synthase [iNOS], cyclooxygenase [COX]-2), IκB-α degradation, RelA/p65 phosphorylation and caspase cleavages were measured by immunblotting. NF-κB transcriptional activity, IκB kinase (IKK) activity and nitric oxide (NO) production was measured using the luciferase assay, in vitro kinase assay and Griess reaction. RESULTS WECR efficiently inhibited LPS-induced expression of proinflammatory mediators including iNOS and COX-2. IKK kinase activity, IκB-α degradation, nuclear translocation of RelA/p65 and NF-κB transcriptional activity induced by LPS were suppressed by WECR. Furthermore, WECR dramatically enhances the apoptotic response, as evident by the combination with tumor necrosis factor (TNF) was able to induce the cytotoxic action through caspase-dependent pathway. CONCLUSION These results indicate that WECR has a potential to inhibit IKK-mediated NF-κB activation, and is a valuable compound for modulating inflammatory or cancerous conditions.


The Korean Journal of Physiology and Pharmacology | 2008

Long-term Activation of c-Jun N-terminal Kinase through Receptor Interacting Protein is Associated with DNA Damage-induced Cell Death

Jeong Ho Seok; Kyeong Ah Park; Hee Sun Byun; Minho Won; Sanghee Shin; Byung-Lyul Choi; Hyunji Lee; Young-Rae Kim; Jang Hee Hong; Jongsun Park; Gang Min Hur

Activation of c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is an important cellular response that modulates the outcome of the cells which are exposed to the tumor necrosis factor (TNF) or the genotoxic stress including DNA damaging agents. Although it is known that JNK is activated in response to genotoxic stress, neither the pathways to transduce signals to activate JNK nor the primary sensors of the cells that trigger the stress response have been identified. Here, we report that the receptor interacting protein (RIP), a key adaptor protein of TNF signaling, was required to activate JNK in the cells treated with certain DNA damaging agents such as adriamycin (Adr) and 1-beta-D-arabinofuranosylcytosine (Ara-C) that cause slow and sustained activation, but it was not required when treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and short wavelength UV, which causes quick and transient activation. Our findings revealed that this sustained JNK activation was not mediated by the TNF (tumor necrosis factor) receptor signaling, but it required a functional ATM (ataxia telangiectasia) activity. In addition, JNK inhibitor SP-600125 significantly blocked the Adr-induced cell death, but it did not affect the cell death induced by MNNG. These findings suggest that the sustained activation of JNK mediated by RIP plays an important role in the DNA damage-induced cell death, and that the duration of JNK activation relays a different stress response to determine the cell fate.


Journal of Korean Medical Science | 2010

Disruption of Microtubules Sensitizes the DNA Damage-induced Apoptosis Through Inhibiting Nuclear Factor κB (NF-κB) DNA-binding Activity

Hyunji Lee; Juhee Jeon; Young Sue Ryu; Jae Eun Jeong; Sanghee Shin; Tiejun Zhang; Seong Wook Kang; Jang Hee Hong; Gang Min Hur

The massive reorganization of microtubule network involves in transcriptional regulation of several genes by controlling transcriptional factor, nuclear factor-kappa B (NF-κB) activity. The exact molecular mechanism by which microtubule rearrangement leads to NF-κB activation largely remains to be identified. However microtubule disrupting agents may possibly act in synergy or antagonism against apoptotic cell death in response to conventional chemotherapy targeting DNA damage such as adriamycin or comptothecin in cancer cells. Interestingly pretreatment of microtubule disrupting agents (colchicine, vinblastine and nocodazole) was observed to lead to paradoxical suppression of DNA damage-induced NF-κB binding activity, even though these could enhance NF-κB signaling in the absence of other stimuli. Moreover this suppressed NF-κB binding activity subsequently resulted in synergic apoptotic response, as evident by the combination with Adr and low doses of microtubule disrupting agents was able to potentiate the cytotoxic action through caspase-dependent pathway. Taken together, these results suggested that inhibition of microtubule network chemosensitizes the cancer cells to die by apoptosis through suppressing NF-κB DNA binding activity. Therefore, our study provided a possible anti-cancer mechanism of microtubule disrupting agent to overcome resistance against to chemotherapy such as DNA damaging agent.


Phytomedicine | 2014

Effects of the root of Platycodon grandiflorum on airway mucin hypersecretion in vivo and platycodin D3 and deapi-platycodin on production and secretion of airway mucin in vitro

Jiho Ryu; Hyun Jae Lee; Su Hyun Park; Jinwoong Kim; Dongho Lee; Sang Kook Lee; Yeong Shik Kim; Jang Hee Hong; Jeong Ho Seok; Choong Jae Lee

We investigated whether aqueous extract of the root of Platycodon grandiflorum A. de Candolle (APG), platycodinD(3) and deapi-platycodin significantly affect the production and secretion of airway mucin using in vivo and in vitro experimental models. Effect of APG was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. Confluent NCI-H292 cells were pretreated with platycodinD(3) or deapi-platycodin for 30min and then stimulated with PMA (phorbol 12-myristate 13-acetate) for 24h. The MUC5AC mucin production and secretion were measured by ELISA. The results were as follows: (1) APG stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; (2) platycodinD(3) and deapi-platycodin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively; (3) however, platycodinD(3) and deapi-platycodin did not inhibit but stimulated the secretion of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. This result suggests that aqueous extract of P. grandiflorum A. de Candolle and the two natural products derived from it, platycodinD(3) and deapi-platycodin, can regulate the production and secretion of airway mucin and, at least in part, explains the traditional use of aqueous extract of P. grandiflorum A. de Candolle as expectorants in diverse inflammatory pulmonary diseases.

Collaboration


Dive into the Jang Hee Hong's collaboration.

Top Co-Authors

Avatar

Gang Min Hur

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Ho Seok

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hee Sun Byun

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Kyeong Ah Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Eun-Heui Jin

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Minho Won

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Sanghee Shin

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

JaeWoo Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jongsun Park

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge