Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minho Won is active.

Publication


Featured researches published by Minho Won.


Journal of Biological Chemistry | 2008

Regulation of 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) by Src Involves Tyrosine Phosphorylation of PDK1 and Src Homology 2 Domain Binding

Keum-Jin Yang; Sanghee Shin; Longzhen Piao; Eulsoon Shin; Yuwen Li; Kyeong Ah Park; Hee Sun Byun; Minho Won; Jang-Hee Hong; Gi Ryang Kweon; Gang Min Hur; Jeong Ho Seok; Taehoon Chun; Derek P. Brazil; Brian Arthur Hemmings; Jongsun Park

3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr9 and Tyr373/376) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr9 antibodies showed that the level of Tyr9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr9, distinct from Tyr373/376, is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.


Cancer Research | 2009

Association of LETM1 and MRPL36 Contributes to the Regulation of Mitochondrial ATP Production and Necrotic Cell Death

Longzhen Piao; Yuwen Li; Soung Jung Kim; Hee Sun Byun; Song Mei Huang; Soon-Kyung Hwang; Keum-Jin Yang; Kyeong Ah Park; Minho Won; Jang-Hee Hong; Gang Min Hur; Jeong Ho Seok; Minho Shong; Myung-Haing Cho; Derek P. Brazil; Brian A. Hemmings; Jongsun Park

Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is a mitochondrial inner membrane protein that was first identified in Wolf-Hirschhorn syndrome, and was deleted in nearly all patients with the syndrome. LETM1 encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. Here, we describe LETM1-mediated regulation of mitochondrial ATP production and biogenesis. We show that LETM1 overexpression can induce necrotic cell death in HeLa cells, in which LETM1 reduces mitochondrial biogenesis and ATP production. LETM1 acts as an anchor protein and associates with mitochondrial ribosome protein L36. Adenovirus-mediated overexpression of LETM1 reduced mitochondrial mass and expression of many mitochondrial proteins. LETM1-mediated inhibition of mitochondrial biogenesis enhanced glycolytic ATP supply and activated protein kinase B activity and cell survival signaling. The expression levels of LETM1 were significantly increased in multiple human cancer tissues compared with normals. These data suggest that LETM1 serves as an anchor protein for complex formation with the mitochondrial ribosome and regulates mitochondrial biogenesis. The increased expression of LETM1 in human cancer suggests that dysregulation of LETM1 is a key feature of tumorigenesis.


BMC Cancer | 2008

Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC

Young-Rae Kim; Hee Sun Byun; Minho Won; Kyeong Ah Park; Jin-Man Kim; Byung Lyul Choi; Hyunji Lee; Jang Hee Hong; Jongsun Park; Jeong Ho Seok; Dong Wook Kim; Minho Shong; Seung-Kiel Park; Gang Min Hur

BackgroundRET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation.MethodsCancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay.ResultsIn human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC.ConclusionThese findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.


Experimental and Molecular Medicine | 2008

Prevention of TNF-induced necrotic cell death by rottlerin through a Nox1 NADPH oxidase.

Hee Sun Byun; Minho Won; Kyeong Ah Park; Young-Rae Kim; Byung Lyul Choi; Hyunji Lee; Jang Hee Hong; Longzhen Piao; Jongsun Park; Jin-Man Kim; Gi Ryang Kweon; Sung Hyun Kang; Jin Han; Gang Min Hur

Previous studies have demonstrated that rottlerin, a specific PKCδ inhibitor, potentiates death receptormediated apoptosis through a cytochrome c-dependent or -independent pathway. However, its ability to regulate necrotic cell death, as well as the underlying mechanism, remains unknown. We found that in murine fibrosarcoma L929 cells, treatment with rottlerin protected the cells against TNF-induced necrosis, whereas it sensitized the cells to apoptosis induced by co-treatment with Hsp90 inhibitor geldanamycin and TNF, in a manner independent of its ability to inhibit PKC-δ. TNF treatment induced rapid accumulation of mitochondrial superoxide (O2-) through the Nox1 NADPH oxidase when cells undergo necrosis. Moreover, pretreatment with rottlerin failed to induce the GTP-bound form of small GTPase Rac1 by TNF treatment, and subsequently suppressed mitochondrial O2- production and poly(ADP-ribose) polymerase activation, thus inhibiting necrotic cell death. Therefore, our study suggests that Nox1 NADPH oxidase is a new molecular target for anti-necrotic activity of rottlerin upon death-receptor ligation.


Journal of Hepatology | 2009

Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: Implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration

Minho Won; Kyeong Ah Park; Hee Sun Byun; Young-Rae Kim; Byung Lyul Choi; Jang Hee Hong; Jongsun Park; Jeong Ho Seok; Young-Ho Lee; Chung-Hyun Cho; In Sang Song; Yong Kyung Kim; Han-Ming Shen; Gang Min Hur

BACKGROUND/AIMS Based on the observation of biphasic induction of SGK1 expression in the regenerating liver, we investigated the role of SGK1 in the regulation of MEK/ERK signaling pathway which plays a crucial role in regulating growth and survival signaling. METHODS To determine the role of SGK1 in the activation of MEK/ERK signaling cascade, we infected primary hepatocytes with recombinant adenoviral vector encoding SGK1, and assessed its effect on the MEK/ERK signaling pathway. RESULTS Partial hepatectomy resulted in the biphasic transcriptional induction of SGK1 in regenerating liver tissues. Infection of primary hepatocytes with an adenoviral vector encoding SGK1 enhanced the ERK phosphorylation under serum-starved conditions and this was blocked by the expression of kinase-dead SGK1. SGK1 was found to physically interact with ERK1/2 as well as MEK1/2. Furthermore, SGK1 mediated the phosphorylation of ERK2 on Ser(29) in a serum-dependent manner. Replacement of Ser(29) to aspartic acid, which mimics the phosphorylation of Ser(29), enhanced the ERK2 activity as well as the MEK/ERK complexes formation. CONCLUSIONS SGK1 expression during liver regeneration is a part of a signaling pathway that is necessary for enhancing ERK signaling activation through modulating the MEK/ERK complex formation.


Cellular Signalling | 2009

Regulation of OPA1-mediated mitochondrial fusion by leucine zipper/EF-hand-containing transmembrane protein-1 plays a role in apoptosis

Longzhen Piao; Yuwen Li; Soung Jung Kim; Kyung-Cheol Sohn; Keum-Jin Yang; Kyeong Ah Park; Hee Sun Byun; Minho Won; Jang-Hee Hong; Gang Min Hur; Jeong Ho Seok; Minho Shong; Ragna Sack; Derek P. Brazil; Brian A. Hemmings; Jongsun Park

Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage.


Journal of Biological Chemistry | 2006

The Death Domain Kinase RIP Has an Important Role in DNA Damage-induced, p53-independent Cell Death

Gang Min Hur; You-Sun Kim; Minho Won; Swati Choksi; Zheng-gang Liu

Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53–/– mouse embryonic fibroblast cells. We found that RIP–/– mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP–/– cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death.


BMC Cell Biology | 2009

Heat shock protein 70-mediated sensitization of cells to apoptosis by Carboxyl-Terminal Modulator Protein

Longzhen Piao; Yuwen Li; Keum Jin Yang; Kyeong Ah Park; Hee Sun Byun; Minho Won; Jang-Hee Hong; Jeong Lan Kim; Gi Ryang Kweon; Gang Min Hur; Jeong Ho Seok; Jae Youl Cho; Taehoon Chun; Daniel Hess; Ragna Sack; Sauveur Michel Maira; Derek P. Brazil; Brian A. Hemmings; Jongsun Park

BackgroundThe serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process.ResultsCTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38) were identified as novel in vivo phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70) inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function.ConclusionOur data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.


PLOS ONE | 2015

Brazilin Limits Inflammatory Responses through Induction of Prosurvival Autophagy in Rheumatoid Fibroblast-Like Synoviocytes

Hyunji Lee; Seong Wook Kang; Hee Sun Byun; Juhee Jeon; Kyeong Ah Park; Kidong Kang; Wonhyoung Seo; Minho Won; Jeong Ho Seok; Man-Deuk Han; Han-Ming Shen; Gang Min Hur

Brazilin is an active compound of Caesalpinia sappan L. (Leguminosae), which possesses pro-apoptotic and anti-inflammation potentials depending on the specific cell type. However, it is largely unknown whether autophagy is implicated in the mechanism underlying its chemotherapeutic and anti-inflammatory effects in rheumatoid arthritis (RA). Here, we show that treatment of RA fibroblast-like synoviocytes (FLS) with brazilin results in enhanced level of autophagic flux, evidenced by accumulation of autophagosome and increased level of lipidated LC3 (LC3-II), which is mainly mediated by enhanced production of reactive oxygen species (ROS). Interestingly, long-term exposure of brazilin was able to restore cell survival against the cytotoxity, exclusively in RA FLS, but not in normal fibroblast. Importantly, such a restoration from brazilin-induced cytotoxity in RA FLS was completely abrogated after co-treatment with autophagy inhibitors including NH4Cl or chloroquine. Furthermore, we found that the pretreatment of RA FLS with brazilin reduced LPS- or TNF-induced NF-κB activation and the secretion of inflammatory cytokines in parallel with the enhanced autophagic flux. Such anti-NF-κB potentials of brazilin were drastically masked in RA FLS when autophagy was suppressed. These results suggest that brazilin is capable of activating autophagy exclusively in RA FLS, and such inducible autophagy promotes cell survival and limits inflammatory response.


Journal of Ethnopharmacology | 2011

Water extract of Cynanchi atrati Radix regulates inflammation and apoptotic cell death through suppression of IKK-mediated NF-κB signaling.

Juhee Jeon; Kyeong Ah Park; Hyunji Lee; Sanghee Shin; Tiejun Zhang; Minho Won; Hyun Kyung Yoon; Min Kyung Choi; Hyeong Geug Kim; Chang Gue Son; Jang Hee Hong; Gang Min Hur

ETHNOPHARMACOLOGICAL RELEVANCE Cynanchi atrati Radix has been traditionally used as an anti-inflammatory agent to treat febrile diseases, acute urinary infection or subcutaneous pyogenic infection with invasion of the pathogenic factors. AIM OF STUDY Nuclear factor (NF)-κB is a pleiotropic transcriptional factor of many genes involved in inflammatory and anti-apoptotic responses. To identify a novel, potent inhibitor of NF-κB signaling pathway, a plant extract library of traditional oriental medicine was screened for the capability to block the NF-κB activity in cells overexpressing toll-like receptor 4 (TLR4), and then evaluated the anti-inflammatory and pro-apoptotic functions of water extract of Cynanchi atrati Radix (WECR) in macrophages and cancer cells, respectively. MATERIALS AND METHODS The effect of WECR on the proinflammatory mediators (inducible NO synthase [iNOS], cyclooxygenase [COX]-2), IκB-α degradation, RelA/p65 phosphorylation and caspase cleavages were measured by immunblotting. NF-κB transcriptional activity, IκB kinase (IKK) activity and nitric oxide (NO) production was measured using the luciferase assay, in vitro kinase assay and Griess reaction. RESULTS WECR efficiently inhibited LPS-induced expression of proinflammatory mediators including iNOS and COX-2. IKK kinase activity, IκB-α degradation, nuclear translocation of RelA/p65 and NF-κB transcriptional activity induced by LPS were suppressed by WECR. Furthermore, WECR dramatically enhances the apoptotic response, as evident by the combination with tumor necrosis factor (TNF) was able to induce the cytotoxic action through caspase-dependent pathway. CONCLUSION These results indicate that WECR has a potential to inhibit IKK-mediated NF-κB activation, and is a valuable compound for modulating inflammatory or cancerous conditions.

Collaboration


Dive into the Minho Won's collaboration.

Top Co-Authors

Avatar

Gang Min Hur

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Kyeong Ah Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hee Sun Byun

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Ho Seok

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jongsun Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Longzhen Piao

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Sanghee Shin

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jang Hee Hong

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Keum-Jin Yang

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge