Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janice Kim is active.

Publication


Featured researches published by Janice Kim.


Nature Immunology | 2011

IL-17C regulates the innate immune function of epithelial cells in an autocrine manner

Vladimir Ramirez-Carrozzi; Arivazhagan Sambandam; Elizabeth Luis; Zhongua Lin; Surinder Jeet; Justin Lesch; Jason A. Hackney; Janice Kim; Meijuan Zhou; Joyce Lai; Zora Modrusan; Tao Sai; Wyne P. Lee; Min Xu; Patrick Caplazi; Lauri Diehl; Jason de Voss; Mercedesz Balazs; Lino C. Gonzalez; Harinder Singh; Wenjun Ouyang; Rajita Pappu

Interleukin 17C (IL-17C) is a member of the IL-17 family that is selectively induced in epithelia by bacterial challenge and inflammatory stimuli. Here we show that IL-17C functioned in a unique autocrine manner, binding to a receptor complex consisting of the receptors IL-17RA and IL-17RE, which was preferentially expressed on tissue epithelial cells. IL-17C stimulated epithelial inflammatory responses, including the expression of proinflammatory cytokines, chemokines and antimicrobial peptides, which were similar to those induced by IL-17A and IL-17F. However, IL-17C was produced by distinct cellular sources, such as epithelial cells, in contrast to IL-17A, which was produced mainly by leukocytes, especially those of the TH17 subset of helper T cells. Whereas IL-17C promoted inflammation in an imiquimod-induced skin-inflammation model, it exerted protective functions in dextran sodium sulfate–induced colitis. Thus, IL-17C is an essential autocrine cytokine that regulates innate epithelial immune responses.


Nature | 2015

Novel antibody–antibiotic conjugate eliminates intracellular S. aureus

Sophie M. Lehar; Thomas H. Pillow; Min Xu; Leanna Staben; Kimberly Kajihara; Richard Vandlen; Laura DePalatis; Helga Raab; Wouter L. W. Hazenbos; J. Hiroshi Morisaki; Janice Kim; Summer Park; Martine Darwish; Byoung-Chul Lee; Hilda Hernandez; Kelly M. Loyet; Patrick Lupardus; Rina Fong; Donghong Yan; Cecile Chalouni; Elizabeth Luis; Yana Khalfin; Emile Plise; Jonathan Cheong; Joseph P. Lyssikatos; Magnus Strandh; Klaus Koefoed; Peter S. Andersen; John A. Flygare; Man Wah Tan

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody–antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody–antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


PLOS Pathogens | 2010

Host-Detrimental Role of Esx-1-Mediated Inflammasome Activation in Mycobacterial Infection

Fredric Carlsson; Janice Kim; Calin Dumitru; Kai H. Barck; Richard A. D. Carano; Mei Sun; Lauri Diehl; Eric J. Brown

The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium marinum. However, the molecular events and host-pathogen interactions underlying Esx-1-mediated virulence in vivo remain unclear. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows detailed quantitative analysis of disease progression. M. marinum established local infection in mouse tails, with Esx-1-dependent formation of caseating granulomas similar to those formed in human tuberculosis, and bone deterioration reminiscent of skeletal tuberculosis. Analysis of tails infected with wild type or Esx-1-deficient bacteria showed that Esx-1 enhanced generation of proinflammatory cytokines, including the secreted form of IL-1β, suggesting that Esx-1 promotes inflammasome activation in vivo. In vitro experiments indicated that Esx-1-dependent inflammasome activation required the host NLRP3 and ASC proteins. Infection of wild type and ASC-deficient mice demonstrated that Esx-1-dependent inflammasome activation exacerbated disease without restricting bacterial growth, indicating a host-detrimental role of this inflammatory pathway in mycobacterial infection. These findings define an immunoregulatory role for Esx-1 in a specific host-pathogen interaction in vivo, and indicate that the Esx-1 secretion system promotes disease and inflammation through its ability to activate the inflammasome.


The Journal of Infectious Diseases | 2014

Global Gene Expression of Methicillin-resistant Staphylococcus aureus USA300 During Human and Mouse Infection

Shailesh V. Date; Zora Modrusan; Michael S. Lawrence; J. Hiroshi Morisaki; Karen Toy; Ishita M. Shah; Janice Kim; Summer Park; Min Xu; Li Basuino; Liana Chan; Deborah Zeitschel; Henry F. Chambers; Man-Wah Tan; Eric J. Brown; Binh An Diep; Wouter L. W. Hazenbos

Little is known about the expression of methicillin-resistant Staphylococcus aureus (MRSA) genes during infection conditions. Here, we described the transcriptome of the clinical MRSA strain USA300 derived from human cutaneous abscesses, and compared it with USA300 bacteria derived from infected kidneys in a mouse model. Remarkable similarity between the transcriptomes allowed us to identify genes encoding multiple proteases and toxins, and iron- and peptide-transporter molecules, which are upregulated in both infections and are likely important for establishment of infection. We also showed that disruption of the global transcriptional regulators agr and sae prevents in vivo upregulation of many toxins and proteases, protecting mice from lethal infection dose, and hinting at the role of these transcriptional regulators in the pathology of MRSA infection.


PLOS Pathogens | 2013

Novel Staphylococcal Glycosyltransferases SdgA and SdgB Mediate Immunogenicity and Protection of Virulence-Associated Cell Wall Proteins

Wouter L. W. Hazenbos; Kimberly Kajihara; Richard Vandlen; J. Hiroshi Morisaki; Sophie M. Lehar; Mark J. Kwakkenbos; Tim Beaumont; Arjen Q. Bakker; Qui Phung; Lee R. Swem; Satish Ramakrishnan; Janice Kim; Min Xu; Ishita M. Shah; Binh An Diep; Tao Sai; Andrew Sebrell; Yana Khalfin; Angela Oh; Chris Koth; S. Jack Lin; Byoung-Chul Lee; Magnus Strandh; Klaus Koefoed; Peter S. Andersen; Hergen Spits; Eric J. Brown; Man-Wah Tan; Sanjeev Mariathasan

Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.


Infection and Immunity | 2012

Mycobacterium marinum SecA2 Promotes Stable Granulomas and Induces Tumor Necrosis Factor Alpha In Vivo

Brigitte Y. Watkins; Shilpa A. Joshi; David A. Ball; Hadley Leggett; Summer Park; Janice Kim; Cary D. Austin; Andres Paler-Martinez; Min Xu; Kenneth H. Downing; Eric J. Brown

ABSTRACT SecA2 is an ATPase present in some pathogenic Gram-positive bacteria, is required for translocation of a limited set of proteins across the cytosolic membrane, and plays an important role in virulence in several bacteria, including mycobacteria that cause diseases such as tuberculosis and leprosy. However, the mechanisms by which SecA2 affects virulence are incompletely understood. To investigate whether SecA2 modulates host immune responses in vivo, we studied Mycobacterium marinum infection in two different hosts: an established zebrafish model and a recently described mouse model. Here we show that M. marinum ΔsecA2 was attenuated for virulence in both host species and SecA2 was needed for normal granuloma numbers and for optimal tumor necrosis factor alpha response in both zebrafish and mice. M. marinum ΔsecA2 was more sensitive to SDS and had unique protrusions from its cell envelope when examined by cryo-electron tomography, suggesting that SecA2 is important for bacterial cell wall integrity. These results provide evidence that SecA2 induces granulomas and is required for bacterial modulation of the host response because it affects the mycobacterial cell envelope.


PLOS ONE | 2015

The Staphylococcus aureus ABC-Type Manganese Transporter MntABC Is Critical for Reinitiation of Bacterial Replication Following Exposure to Phagocytic Oxidative Burst.

Alison Coady; Min Xu; Qui Phung; Tommy K. Cheung; Corey E. Bakalarski; Mary Kate Alexander; Sophie M. Lehar; Janice Kim; Summer Park; Man-Wah Tan; Mireille Nishiyama

Manganese plays a central role in cellular detoxification of reactive oxygen species (ROS). Therefore, manganese acquisition is considered to be important for bacterial pathogenesis by counteracting the oxidative burst of phagocytic cells during host infection. However, detailed analysis of the interplay between bacterial manganese acquisition and phagocytic cells and its impact on bacterial pathogenesis has remained elusive for Staphylococcus aureus, a major human pathogen. Here, we show that a mntC mutant, which lacks the functional manganese transporter MntABC, was more sensitive to killing by human neutrophils but not murine macrophages, unless the mntC mutant was pre-exposed to oxidative stress. Notably, the mntC mutant formed strikingly small colonies when recovered from both type of phagocytic cells. We show that this phenotype is a direct consequence of the inability of the mntC mutant to reinitiate growth after exposure to phagocytic oxidative burst. Transcript and quantitative proteomics analyses revealed that the manganese-dependent ribonucleotide reductase complex NrdEF, which is essential for DNA synthesis and repair, was highly induced in the mntC mutant under oxidative stress conditions including after phagocytosis. Since NrdEF proteins are essential for S. aureus viability we hypothesize that cells lacking MntABC might attempt to compensate for the impaired function of NrdEF by increasing their expression. Our data suggest that besides ROS detoxification, functional manganese acquisition is likely crucial for S. aureus pathogenesis by repairing oxidative damages, thereby ensuring efficient bacterial growth after phagocytic oxidative burst, which is an attribute critical for disseminating and establishing infection in the host.


Cell Host & Microbe | 2013

An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies.

Gerald R. Nakamura; Ning Chai; Summer Park; Nan Chiang; Zhonghua Lin; Henry Chiu; Rina Fong; Donghong Yan; Janice Kim; Juan Zhang; Wyne P. Lee; Alberto Estevez; Mary Coons; Min Xu; Patrick Lupardus; Mercedesz Balazs; Lee R. Swem


Journal of Bacteriology | 2016

De novo guanine biosynthesis, but not the riboswitch-regulated purine salvage pathway, is required for Staphylococcus aureus infection in vivo.

Eric M. Kofoed; Donghong Yan; Anand K. Katakam; Mike Reichelt; Baiwei Lin; Janice Kim; Summer Park; Shailesh V. Date; Ian R. Monk; Min Xu; Cary D. Austin; Till Maurer; Man-Wah Tan


Antimicrobial Agents and Chemotherapy | 2018

Disrupting Gram-Negative Bacterial Outer Membrane Biosynthesis through Inhibition of the Lipopolysaccharide Transporter MsbA

Mary Kate Alexander; Anh Miu; Angela Oh; Mike Reichelt; Hoangdung Ho; Cecile Chalouni; Sharada Shenvi Labadie; Lan Wang; Jun Liang; Nicholas N. Nickerson; Huiyong Hu; Lan Yu; Miaofen Du; Donghong Yan; Summer Park; Janice Kim; Min Xu; Benjamin D. Sellers; Hans E. Purkey; Nicholas J. Skelton; Michael F. T. Koehler; Jian Payandeh; Vishal Verma; Yiming Xu; Christopher M. Koth; Mireille Nishiyama

Collaboration


Dive into the Janice Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Binh An Diep

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge