Janina Dordel
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janina Dordel.
PLOS Pathogens | 2010
Ulrich Nübel; Janina Dordel; Kevin Kurt; Birgit Strommenger; Henrik Westh; Sanjay K. Shukla; Helena Zemlickova; Raphaël Leblois; Thierry Wirth; Thibaut Jombart; Francois Balloux; Wolfgang Witte
Due to the lack of fossil evidence, the timescales of bacterial evolution are largely unknown. The speed with which genetic change accumulates in populations of pathogenic bacteria, however, is a key parameter that is crucial for understanding the emergence of traits such as increased virulence or antibiotic resistance, together with the forces driving pathogen spread. Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of hospital-acquired infections. We have investigated an MRSA strain (ST225) that is highly prevalent in hospitals in Central Europe. By using mutation discovery at 269 genetic loci (118,804 basepairs) within an international isolate collection, we ascertained extremely low diversity among European ST225 isolates, indicating that a recent population bottleneck had preceded the expansion of this clone. In contrast, US isolates were more divergent, suggesting they represent the ancestral population. While diversity was low, however, our results demonstrate that the short-term evolutionary rate in this natural population of MRSA resulted in the accumulation of measurable DNA sequence variation within two decades, which we could exploit to reconstruct its recent demographic history and the spatiotemporal dynamics of spread. By applying Bayesian coalescent methods on DNA sequences serially sampled through time, we estimated that ST225 had diverged since approximately 1990 (1987 to 1994), and that expansion of the European clade began in 1995 (1991 to 1999), several years before the new clone was recognized. Demographic analysis based on DNA sequence variation indicated a sharp increase of bacterial population size from 2001 to 2004, which is concordant with the reported prevalence of this strain in several European countries. A detailed ancestry-based reconstruction of the spatiotemporal dispersal dynamics suggested a pattern of frequent transmission of the ST225 clone among hospitals within Central Europe. In addition, comparative genomics indicated complex bacteriophage dynamics.
Lancet Infectious Diseases | 2014
Yonatan H. Grad; Robert D. Kirkcaldy; David L. Trees; Janina Dordel; Simon R. Harris; Edward Goldstein; Hillard Weinstock; Julian Parkhill; William P. Hanage; Stephen D. Bentley; Marc Lipsitch
Summary Background The emergence of Neisseria gonorrhoeae with decreased susceptibility to extended spectrum cephalosporins raises the prospect of untreatable gonorrhoea. In the absence of new treatments, efforts to slow the increasing incidence of resistant gonococcus require insight into the factors that contribute to its emergence and spread. We assessed the relatedness between isolates in the USA and reconstructed likely spread of lineages through different sexual networks. Methods We sequenced the genomes of 236 isolates of N gonorrhoeae collected by the Centers for Disease Control and Preventions Gonococcal Isolate Surveillance Project (GISP) from sentinel public sexually transmitted disease clinics in the USA, including 118 (97%) of the isolates from 2009–10 in GISP with reduced susceptibility to cefixime (cefRS) and 118 cefixime-susceptible isolates from GISP matched as closely as possible by location, collection date, and sexual orientation. We assessed the association between antimicrobial resistance genotype and phenotype and correlated phylogenetic clustering with location and sexual orientation. Findings Mosaic penA XXXIV had a high positive predictive value for cefRS. We found that two of the 118 cefRS isolates lacked a mosaic penA allele, and rechecking showed that these two were susceptible to cefixime. Of the 116 remaining cefRS isolates, 114 (98%) fell into two distinct lineages that have independently acquired mosaic penA allele XXXIV. A major lineage of cefRS strains spread eastward, predominantly through a sexual network of men who have sex with men. Eight of nine inferred transitions between sexual networks were introductions from men who have sex with men into the heterosexual population. Interpretation Genomic methods might aid efforts to slow the spread of antibiotic-resistant N gonorrhoeae through augmentation of gonococcal outbreak surveillance and identification of populations that could benefit from increased screening for aymptomatic infections. Funding American Sexually Transmitted Disease Association, Wellcome Trust, National Institute of General Medical Sciences, and National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Anne-Catrin Uhlemann; Janina Dordel; Justin R. Knox; Kathy E. Raven; Julian Parkhill; Matthew T. G. Holden; Sharon J. Peacock; Franklin D. Lowy
Significance A single clone, pulsed-field gel type USA300, has driven an unprecedented community-associated epidemic of Staphylococcus aureus infections, often affecting young, otherwise healthy individuals. Here we reconstruct the recent evolution and phylogeographic spread of USA300, using whole-genome sequencing of a large collection of infection and colonization isolates from a Manhattan community. We find that households serve as major reservoirs of persistence and transmission. By defining isolate variability within and between households, we localized putative transmission networks in the community. We further identified clonal spread of fluoroquinolone-resistant USA300, suggesting a critical role for antibiotic exposure in the recent evolution of this epidemic strain. Our study provides an important framework for molecular epidemiological investigations into the transmission of opportunistic pathogens that colonize and infect communities. During the last 2 decades, community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains have dramatically increased the global burden of S. aureus infections. The pandemic sequence type (ST)8/pulsed-field gel type USA300 is the dominant CA-MRSA clone in the United States, but its evolutionary history and basis for biological success are incompletely understood. Here, we use whole-genome sequencing of 387 ST8 isolates drawn from an epidemiological network of CA-MRSA infections and colonizations in northern Manhattan to explore short-term evolution and transmission patterns. Phylogenetic analysis predicted that USA300 diverged from a most common recent ancestor around 1993. We found evidence for multiple introductions of USA300 and reconstructed the phylogeographic spread of isolates across neighborhoods. Using pair-wise single-nucleotide polymorphism distances as a measure of genetic relatedness between isolates, we observed that most USA300 isolates had become endemic in households, indicating their critical role as reservoirs for transmission and diversification. Using the maximum single-nucleotide polymorphism variability of isolates from within households as a threshold, we identified several possible transmission networks beyond households. Our study also revealed the evolution of a fluoroquinolone-resistant subpopulation in the mid-1990s and its subsequent expansion at a time of high-frequency outpatient antibiotic use. This high-resolution phylogenetic analysis of ST8 has documented the genomic changes associated with USA300 evolution and how some of its recent evolution has been shaped by antibiotic use. By integrating whole-genome sequencing with detailed epidemiological analyses, our study provides an important framework for delineating the full diversity and spread of USA300 and other emerging pathogens in large urban community populations.
Mbio | 2016
David M. Aanensen; Edward J. Feil; Matthew T. G. Holden; Janina Dordel; Corin Yeats; Artemij Fedosejev; Richard J. E. Goater; Santiago Castillo-Ramírez; Jukka Corander; Caroline Colijn; Monika A. Chlebowicz; L. M. Schouls; Max Heck; Gerlinde N. Pluister; Raymond Ruimy; Gunnar Kahlmeter; Jenny Åhman; Erika Matuschek; Alexander W. Friedrich; Julian Parkhill; Stephen D. Bentley; Brian G. Spratt; Hajo Grundmann
ABSTRACT The implementation of routine whole-genome sequencing (WGS) promises to transform our ability to monitor the emergence and spread of bacterial pathogens. Here we combined WGS data from 308 invasive Staphylococcus aureus isolates corresponding to a pan-European population snapshot, with epidemiological and resistance data. Geospatial visualization of the data is made possible by a generic software tool designed for public health purposes that is available at the project URL (http://www.microreact.org/project/EkUvg9uY?tt=rc). Our analysis demonstrates that high-risk clones can be identified on the basis of population level properties such as clonal relatedness, abundance, and spatial structuring and by inferring virulence and resistance properties on the basis of gene content. We also show that in silico predictions of antibiotic resistance profiles are at least as reliable as phenotypic testing. We argue that this work provides a comprehensive road map illustrating the three vital components for future molecular epidemiological surveillance: (i) large-scale structured surveys, (ii) WGS, and (iii) community-oriented database infrastructure and analysis tools. IMPORTANCE The spread of antibiotic-resistant bacteria is a public health emergency of global concern, threatening medical intervention at every level of health care delivery. Several recent studies have demonstrated the promise of routine whole-genome sequencing (WGS) of bacterial pathogens for epidemiological surveillance, outbreak detection, and infection control. However, as this technology becomes more widely adopted, the key challenges of generating representative national and international data sets and the development of bioinformatic tools to manage and interpret the data become increasingly pertinent. This study provides a road map for the integration of WGS data into routine pathogen surveillance. We emphasize the importance of large-scale routine surveys to provide the population context for more targeted or localized investigation and the development of open-access bioinformatic tools to provide the means to combine and compare independently generated data with publicly available data sets. The spread of antibiotic-resistant bacteria is a public health emergency of global concern, threatening medical intervention at every level of health care delivery. Several recent studies have demonstrated the promise of routine whole-genome sequencing (WGS) of bacterial pathogens for epidemiological surveillance, outbreak detection, and infection control. However, as this technology becomes more widely adopted, the key challenges of generating representative national and international data sets and the development of bioinformatic tools to manage and interpret the data become increasingly pertinent. This study provides a road map for the integration of WGS data into routine pathogen surveillance. We emphasize the importance of large-scale routine surveys to provide the population context for more targeted or localized investigation and the development of open-access bioinformatic tools to provide the means to combine and compare independently generated data with publicly available data sets.
PLOS Biology | 2015
Maisem Laabei; Anne-Catrin Uhlemann; Franklin D. Lowy; Eloise D. Austin; Maho Yokoyama; Khadija Ouadi; Edward J. Feil; Harry A. Thorpe; Barnabas Williams; Mark Perkins; Sharon J. Peacock; Stephen R. Clarke; Janina Dordel; Matthew T. G. Holden; Antonina A. Votintseva; Rory Bowden; Derrick W. Crook; Bernadette C. Young; Daniel J. Wilson; Mario Recker; Ruth C. Massey
Bacterial virulence is a multifaceted trait where the interactions between pathogen and host factors affect the severity and outcome of the infection. Toxin secretion is central to the biology of many bacterial pathogens and is widely accepted as playing a crucial role in disease pathology. To understand the relationship between toxicity and bacterial virulence in greater depth, we studied two sequenced collections of the major human pathogen Staphylococcus aureus and found an unexpected inverse correlation between bacterial toxicity and disease severity. By applying a functional genomics approach, we identified several novel toxicity-affecting loci responsible for the wide range in toxic phenotypes observed within these collections. To understand the apparent higher propensity of low toxicity isolates to cause bacteraemia, we performed several functional assays, and our findings suggest that within-host fitness differences between high- and low-toxicity isolates in human serum is a contributing factor. As invasive infections, such as bacteraemia, limit the opportunities for onward transmission, highly toxic strains could gain an additional between-host fitness advantage, potentially contributing to the maintenance of toxicity at the population level. Our results clearly demonstrate how evolutionary trade-offs between toxicity, relative fitness, and transmissibility are critical for understanding the multifaceted nature of bacterial virulence.
PLOS Genetics | 2013
Nicholas J. Croucher; Andrea M. Mitchell; Katherine A. Gould; Donald Inverarity; Lars Barquist; Theresa Feltwell; Maria Fookes; Simon R. Harris; Janina Dordel; Susannah J. Salter; Sarah Browall; Helena Zemlickova; Julian Parkhill; Staffan Normark; Birgitta Henriques-Normark; Jason Hinds; Timothy J. Mitchell; Stephen D. Bentley
Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complexs entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that up-regulated the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through small alterations to the genotype.
Mbio | 2014
Janina Dordel; Choonkeun Kim; Marilyn Chung; Maria Pardos de la Gandara; Matthew T. J. Holden; Julian Parkhill; Hermínia de Lencastre; Stephen D. Bentley; Alexander Tomasz
ABSTRACT We identified mutated genes in highly resistant subpopulations of methicillin-resistant Staphylococcus aureus (MRSA) that are most likely responsible for the historic failure of the β-lactam family of antibiotics as therapeutic agents against these important pathogens. Such subpopulations are produced during growth of most clinical MRSA strains, including the four historically early MRSA isolates studied here. Chromosomal DNA was prepared from the highly resistant cells along with DNA from the majority of cells (poorly resistant cells) followed by full genome sequencing. In the highly resistant cells, mutations were identified in 3 intergenic sequences and 27 genes representing a wide range of functional categories. A common feature of these mutations appears to be their capacity to induce high-level β-lactam resistance and increased amounts of the resistance protein PBP2A in the bacteria. The observations fit a recently described model in which the ultimate controlling factor of the phenotypic expression of β-lactam resistance in MRSA is a RelA-mediated stringent response. IMPORTANCE It has been well established that the level of antibiotic resistance (i.e., minimum concentration of a β-lactam antibiotic needed to inhibit growth) of a methicillin-resistant Staphylococcus aureus (MRSA) strain depends on the transcription and translation of the resistance protein PBP2A. Here we describe mutated loci in an additional novel set of genetic determinants that appear to be essential for the unusually high resistance levels typical of subpopulations of staphylococci that are produced with unique low frequency in most MRSA clinical isolates. We propose that mutations in these determinants can trigger induction of the stringent stress response which was recently shown to cause increased transcription/translation of the resistance protein PBP2A in parallel with the increased level of resistance. It has been well established that the level of antibiotic resistance (i.e., minimum concentration of a β-lactam antibiotic needed to inhibit growth) of a methicillin-resistant Staphylococcus aureus (MRSA) strain depends on the transcription and translation of the resistance protein PBP2A. Here we describe mutated loci in an additional novel set of genetic determinants that appear to be essential for the unusually high resistance levels typical of subpopulations of staphylococci that are produced with unique low frequency in most MRSA clinical isolates. We propose that mutations in these determinants can trigger induction of the stringent stress response which was recently shown to cause increased transcription/translation of the resistance protein PBP2A in parallel with the increased level of resistance.
Molecular Phylogenetics and Evolution | 2009
Angelica Crottini; Janina Dordel; Jörn Köhler; Frank Glaw; Andreas Schmitz; Miguel Vences
A phylogeny for 29 species of scincine lizards from Madagascar, based on 3693 bp of six mitochondrial and five nuclear genes, revealed multiple parallel evolution of adaptations for a burrowing life, and unexpected relationships of the monotypic genera Androngo and Cryptoscincus. Androngo trivittatus was sister to Pygomeles braconnieri, and Cryptoscincus minimus was deeply nested within the genus Paracontias, all of these being fossorial taxa of elongated bodies and partly or fully reduced limbs. To account for these results, we place Cryptoscincus as a junior synonym of Paracontias, and discuss possible taxonomic consequences that may affect the status of Androngo, once additional data become available.
Mbio | 2016
Xavier Didelot; Janina Dordel; Lilith K. Whittles; Caitlin Collins; Nicole Bilek; Cynthia J. Bishop; Peter J. White; David M. Aanensen; Julian Parkhill; Stephen D. Bentley; Brian G. Spratt; Simon R. Harris
ABSTRACT Gonorrhea is a sexually transmitted disease causing growing concern, with a substantial increase in reported incidence over the past few years in the United Kingdom and rising levels of resistance to a wide range of antibiotics. Understanding its epidemiology is therefore of major biomedical importance, not only on a population scale but also at the level of direct transmission. However, the molecular typing techniques traditionally used for gonorrhea infections do not provide sufficient resolution to investigate such fine-scale patterns. Here we sequenced the genomes of 237 isolates from two local collections of isolates from Sheffield and London, each of which was resolved into a single type using traditional methods. The two data sets were selected to have different epidemiological properties: the Sheffield data were collected over 6 years from a predominantly heterosexual population, whereas the London data were gathered within half a year and strongly associated with men who have sex with men. Based on contact tracing information between individuals in Sheffield, we found that transmission is associated with a median time to most recent common ancestor of 3.4 months, with an upper bound of 8 months, which we used as a criterion to identify likely transmission links in both data sets. In London, we found that transmission happened predominantly between individuals of similar age, sexual orientation, and location and also with the same HIV serostatus, which may reflect serosorting and associated risk behaviors. Comparison of the two data sets suggests that the London epidemic involved about ten times more cases than the Sheffield outbreak. IMPORTANCE The recent increases in gonorrhea incidence and antibiotic resistance are cause for public health concern. Successful intervention requires a better understanding of transmission patterns, which is not uncovered by traditional molecular epidemiology techniques. Here we studied two outbreaks that took place in Sheffield and London, United Kingdom. We show that whole-genome sequencing provides the resolution to investigate direct gonorrhea transmission between infected individuals. Combining genome sequencing with rich epidemiological information about infected individuals reveals the importance of several transmission routes and risk factors, which can be used to design better control measures. The recent increases in gonorrhea incidence and antibiotic resistance are cause for public health concern. Successful intervention requires a better understanding of transmission patterns, which is not uncovered by traditional molecular epidemiology techniques. Here we studied two outbreaks that took place in Sheffield and London, United Kingdom. We show that whole-genome sequencing provides the resolution to investigate direct gonorrhea transmission between infected individuals. Combining genome sequencing with rich epidemiological information about infected individuals reveals the importance of several transmission routes and risk factors, which can be used to design better control measures.
Genome Medicine | 2016
Hsiao Han Chang; Janina Dordel; Tjibbe Donker; Colin J. Worby; Edward J. Feil; William P. Hanage; Stephen D. Bentley; Susan S. Huang; Marc Lipsitch
BackgroundMethicillin-resistant Staphylococcus aureus (MRSA) is one of the most common healthcare-associated pathogens. To examine the role of inter-hospital patient sharing on MRSA transmission, a previous study collected 2,214 samples from 30 hospitals in Orange County, California and showed by spa typing that genetic differentiation decreased significantly with increased patient sharing. In the current study, we focused on the 986 samples with spa type t008 from the same population.MethodsWe used genome sequencing to determine the effect of patient sharing on genetic differentiation between hospitals. Genetic differentiation was measured by between-hospital genetic diversity, FST, and the proportion of nearly identical isolates between hospitals.ResultsSurprisingly, we found very similar genetic diversity within and between hospitals, and no significant association between patient sharing and genetic differentiation measured by FST. However, in contrast to FST, there was a significant association between patient sharing and the proportion of nearly identical isolates between hospitals. We propose that the proportion of nearly identical isolates is more powerful at determining transmission dynamics than traditional estimators of genetic differentiation (FST) when gene flow between populations is high, since it is more responsive to recent transmission events. Our hypothesis was supported by the results from coalescent simulations.ConclusionsOur results suggested that there was a high level of gene flow between hospitals facilitated by patient sharing, and that the proportion of nearly identical isolates is more sensitive to population structure than FST when gene flow is high.