Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janine M. van Gils is active.

Publication


Featured researches published by Janine M. van Gils.


Nature Immunology | 2010

CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer

Cameron R. Stewart; Lynda M. Stuart; Kim Wilkinson; Janine M. van Gils; Jiusheng Deng; Annett Halle; Katey J. Rayner; Laurent Boyer; Ruiqin Zhong; William A. Frazier; Adam Lacy-Hulbert; Joseph El Khoury; Douglas T. Golenbock; Kathryn J. Moore

In atherosclerosis and Alzheimers disease, deposition of the altered self components oxidized low-density lipoprotein (LDL) and amyloid-β triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and amyloid-β trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this newly identified heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and amyloid-β stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by coreceptor signaling events.


Nature | 2011

Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides

Katey J. Rayner; Christine Esau; Farah N. Hussain; Allison L. McDaniel; Stephanie M. Marshall; Janine M. van Gils; Tathagat Dutta Ray; Frederick J. Sheedy; Leigh Goedeke; Xueqing Liu; Oleg G. Khatsenko; Vivek Kaimal; Cynthia J. Lees; Carlos Fernández-Hernando; Edward A. Fisher; Ryan E. Temel; Kathryn J. Moore

Cardiovascular disease remains the leading cause of mortality in westernized countries, despite optimum medical therapy to reduce the levels of low-density lipoprotein (LDL)-associated cholesterol. The pursuit of novel therapies to target the residual risk has focused on raising the levels of high-density lipoprotein (HDL)-associated cholesterol in order to exploit its atheroprotective effects. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of lipid metabolism and are thus a new class of target for therapeutic intervention. MicroRNA-33a and microRNA-33b (miR-33a/b) are intronic miRNAs whose encoding regions are embedded in the sterol-response-element-binding protein genes SREBF2 and SREBF1 (refs 3–5), respectively. These miRNAs repress expression of the cholesterol transporter ABCA1, which is a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL levels and providing protection against atherosclerosis; however, extrapolating these findings to humans is complicated by the fact that mice lack miR-33b, which is present only in the SREBF1 gene of medium and large mammals. Here we show in African green monkeys that systemic delivery of an anti-miRNA oligonucleotide that targets both miR-33a and miR-33b increased hepatic expression of ABCA1 and induced a sustained increase in plasma HDL levels over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in fatty acid oxidation (CROT, CPT1A, HADHB and PRKAA1) and reduced the expression of genes involved in fatty acid synthesis (SREBF1, FASN, ACLY and ACACA), resulting in a marked suppression of the plasma levels of very-low-density lipoprotein (VLDL)-associated triglycerides, a finding that has not previously been observed in mice. These data establish, in a model that is highly relevant to humans, that pharmacological inhibition of miR-33a and miR-33b is a promising therapeutic strategy to raise plasma HDL and lower VLDL triglyceride levels for the treatment of dyslipidaemias that increase cardiovascular disease risk.


Journal of Clinical Investigation | 2011

Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis

Katey J. Rayner; Frederick J. Sheedy; Christine Esau; Farah N. Hussain; Ryan E. Temel; Saj Parathath; Janine M. van Gils; Alistair Rayner; Aaron N. Chang; Yajaira Suárez; Carlos Fernández-Hernando; Edward A. Fisher; Kathryn J. Moore

Plasma HDL levels have a protective role in atherosclerosis, yet clinical therapies to raise HDL levels have remained elusive. Recent advances in the understanding of lipid metabolism have revealed that miR-33, an intronic microRNA located within the SREBF2 gene, suppresses expression of the cholesterol transporter ABC transporter A1 (ABCA1) and lowers HDL levels. Conversely, mechanisms that inhibit miR-33 increase ABCA1 and circulating HDL levels, suggesting that antagonism of miR-33 may be atheroprotective. As the regression of atherosclerosis is clinically desirable, we assessed the impact of miR-33 inhibition in mice deficient for the LDL receptor (Ldlr-/- mice), with established atherosclerotic plaques. Mice treated with anti-miR33 for 4 weeks showed an increase in circulating HDL levels and enhanced reverse cholesterol transport to the plasma, liver, and feces. Consistent with this, anti-miR33-treated mice showed reductions in plaque size and lipid content, increased markers of plaque stability, and decreased inflammatory gene expression. Notably, in addition to raising ABCA1 levels in the liver, anti-miR33 oligonucleotides directly targeted the plaque macrophages, in which they enhanced ABCA1 expression and cholesterol removal. These studies establish that raising HDL levels by anti-miR33 oligonucleotide treatment promotes reverse cholesterol transport and atherosclerosis regression and suggest that it may be a promising strategy to treat atherosclerotic vascular disease.


Nature Immunology | 2012

The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques

Janine M. van Gils; Merran C Derby; Luciana Rodrigues Fernandes; Bhama Ramkhelawon; Tathagat Dutta Ray; Katey J. Rayner; Sajesh Parathath; Emilie Distel; Jessica L. Feig; Jacqueline I. Alvarez-Leite; Alistair Rayner; Thomas O. McDonald; Kevin D. O'Brien; Lynda M. Stuart; Edward A. Fisher; Adam Lacy-Hulbert; Kathryn J. Moore

Atherosclerotic plaque formation is fueled by the persistence of lipid-laden macrophages in the artery wall. The mechanisms by which these cells become trapped, thereby establishing chronic inflammation, remain unknown. Here we found that netrin-1, a neuroimmune guidance cue, was secreted by macrophages in human and mouse atheroma, where it inactivated the migration of macrophages toward chemokines linked to their egress from plaques. Acting via its receptor, UNC5b, netrin-1 inhibited the migration of macrophages directed by the chemokines CCL2 and CCL19, activation of the actin-remodeling GTPase Rac1 and actin polymerization. Targeted deletion of netrin-1 in macrophages resulted in much less atherosclerosis in mice deficient in the receptor for low-density lipoprotein and promoted the emigration of macrophages from plaques. Thus, netrin-1 promoted atherosclerosis by retaining macrophages in the artery wall. Our results establish a causative role for negative regulators of leukocyte migration in chronic inflammation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

P-Selectin Glycoprotein Ligand-1 Is Expressed on Endothelial Cells and Mediates Monocyte Adhesion to Activated Endothelium

Paula da Costa Martins; Juan-Jesús García-Vallejo; Johannes V. van Thienen; Mar Fernandez-Borja; Janine M. van Gils; Cora Beckers; Anton J.G. Horrevoets; Peter L. Hordijk; Jaap-Jan Zwaginga

Objective—The purpose of this study was to investigate the presence and functionality of P-selectin glycoprotein ligand-1 (PSGL-1) on activated endothelial cells (ECs). Methods and Results—We show here that PSGL-1 is expressed at the mRNA and protein levels in umbilical vein and microvascular ECs. Furthermore, this endothelial PSGL-1 (ePSGL-1) is functional and mediates adhesion of monocytes or platelet-monocyte complexes (PMCs) to the activated endothelium in a flow model. ePSGL-1 expression was not affected by treating ECs with inflammatory stimuli (tumor necrosis factor α, interleukin-1β, thrombin, or histamine). However, the functional binding capacity of ePSGL-1 to monocytes or P-selectin/Fc chimera significantly increased by stimulation of the ECs with TNFα. By means of a siRNA approach to specifically knock-down the genes involved in the glycosylation of PSGL-1 we could show that tumor necrosis factor α–induced glycosylation of ePSGL-1 is critical for its binding capacity. Conclusion—Our results show that ECs express functional PSGL-1 which mediates tethering and firm adhesion of monocytes and platelets to inflamed endothelium.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Neuroimmune Guidance Cue Semaphorin 3E Is Expressed in Atherosclerotic Plaques and Regulates Macrophage Retention

Amarylis Wanschel; Tara Seibert; Bernd Hewing; Bhama Ramkhelawon; Tathagat Dutta Ray; Janine M. van Gils; Katey J. Rayner; Jonathan E. Feig; Edward R. O’Brien; Edward A. Fisher; Kathryn J. Moore

Objective—The persistence of myeloid-derived cells in the artery wall is a characteristic of advanced atherosclerotic plaques. However, the mechanisms by which these cells are retained are poorly understood. Semaphorins, a class of neuronal guidance molecules, play a critical role in vascular patterning and development, and recent studies suggest that they may also have immunomodulatory functions. The present study evaluates the expression of Semaphorin 3E (Sema3E) in settings relevant to atherosclerosis and its contribution to macrophage accumulation in plaques. Approach and Results—Immunofluorescence staining of Sema3E, and its receptor PlexinD1, demonstrated their expression in macrophages of advanced atherosclerotic lesions of Apoe–/– mice. Notably, in 2 different mouse models of atherosclerosis regression, Sema3E mRNA was highly downregulated in plaque macrophages, coincident with a reduction in plaque macrophage content and an enrichment in markers of reparative M2 macrophages. In vitro, Sema3E mRNA was highly expressed in inflammatory M1 macrophages and in macrophages treated with physiological drivers of plaque progression and inflammation, such as oxidized low-density lipoprotein and hypoxia. To explore mechanistically how Sema3E affects macrophage behavior, we treated macrophages with recombinant protein in the presence/absence of chemokines, including CCL19, a chemokine implicated in the egress of macrophages from atherosclerotic plaques. Sema3E blocked actin polymerization and macrophage migration stimulated by the chemokines, suggesting that it may immobilize these cells in the plaque. Conclusions—Sema3E is upregulated in macrophages of advanced plaques, is dynamically regulated by multiple atherosclerosis-relevant factors, and acts as a negative regulator of macrophage migration, which may promote macrophage retention and chronic inflammation in vivo.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Hypoxia Induces Netrin-1 and Unc5b in Atherosclerotic Plaques Mechanism for Macrophage Retention and Survival

Bhama Ramkhelawon; Yuan Yang; Janine M. van Gils; Bernd Hewing; Katey J. Rayner; Sajesh Parathath; Liang Guo; Scott Oldebeken; Jessica L. Feig; Edward A. Fisher; Kathryn J. Moore

Objective— Hypoxia is intimately linked to atherosclerosis and has become recognized as a primary impetus of inflammation. We recently demonstrated that the neuroimmune guidance cue netrin-1 ( Ntn1 ) inhibits macrophage emigration from atherosclerotic plaques, thereby fostering chronic inflammation. However, the mechanisms governing netrin-1 expression in atherosclerosis are not well understood. In this study, we investigate the role of hypoxia in regulating expression of netrin-1 and its receptor uncoordinated-5-B receptor (Unc5b) in plaque macrophages and its functional consequences on these immune cells. Approach and Results— We show by immunostaining that netrin-1 and Unc5b are expressed in macrophages in hypoxia-rich regions of human and mouse plaques. In vitro , Ntn1 and Unc5b mRNA are upregulated in macrophages treated with oxidized low-density lipoprotein or inducers of oxidative stress (CoCl2, dimethyloxalylglycine, 1% O2). These responses are abrogated by inhibiting hypoxia-inducible transcription factor (HIF)-1α, indicating a causal role for this transcription factor in regulating Ntn1 and Unc5b expression in macrophages. Indeed, using promoter-luciferase reporter genes, we show that Ntn1 - and Unc5b -promoter activities are induced by oxidized low-density lipoprotein and require HIF-1α. Correspondingly, J774 macrophages overexpressing active HIF-1α show increased netrin-1 and Unc5b expression and reduced migratory capacity compared with control cells, which was restored by blocking the effects of netrin-1. Finally, we show that netrin-1 protects macrophages from apoptosis under hypoxic conditions in a HIF-1α–dependent manner. Conclusions— These findings provide a molecular mechanism by which netrin-1 and its receptor Unc5b are expressed in atherosclerotic plaques and implicate hypoxia and HIF-1α–induced netrin-1/Unc5b in sustaining inflammation by inhibiting the emigration and promoting the survival of lesional macrophages. # Significance {#article-title-39}Objective—Hypoxia is intimately linked to atherosclerosis and has become recognized as a primary impetus of inflammation. We recently demonstrated that the neuroimmune guidance cue netrin-1 (Ntn1) inhibits macrophage emigration from atherosclerotic plaques, thereby fostering chronic inflammation. However, the mechanisms governing netrin-1 expression in atherosclerosis are not well understood. In this study, we investigate the role of hypoxia in regulating expression of netrin-1 and its receptor uncoordinated-5-B receptor (Unc5b) in plaque macrophages and its functional consequences on these immune cells. Approach and Results—We show by immunostaining that netrin-1 and Unc5b are expressed in macrophages in hypoxia-rich regions of human and mouse plaques. In vitro, Ntn1 and Unc5b mRNA are upregulated in macrophages treated with oxidized low-density lipoprotein or inducers of oxidative stress (CoCl2, dimethyloxalylglycine, 1% O2). These responses are abrogated by inhibiting hypoxia-inducible transcription factor (HIF)-1&agr;, indicating a causal role for this transcription factor in regulating Ntn1 and Unc5b expression in macrophages. Indeed, using promoter-luciferase reporter genes, we show that Ntn1- and Unc5b-promoter activities are induced by oxidized low-density lipoprotein and require HIF-1&agr;. Correspondingly, J774 macrophages overexpressing active HIF-1&agr; show increased netrin-1 and Unc5b expression and reduced migratory capacity compared with control cells, which was restored by blocking the effects of netrin-1. Finally, we show that netrin-1 protects macrophages from apoptosis under hypoxic conditions in a HIF-1&agr;–dependent manner. Conclusions—These findings provide a molecular mechanism by which netrin-1 and its receptor Unc5b are expressed in atherosclerotic plaques and implicate hypoxia and HIF-1&agr;–induced netrin-1/Unc5b in sustaining inflammation by inhibiting the emigration and promoting the survival of lesional macrophages.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis Dysregulation Under Proatherosclerotic Conditions

Janine M. van Gils; Bhama Ramkhelawon; Luciana Rodrigues Fernandes; Merran C. Stewart; Liang Guo; Tara Seibert; Gustavo B. Menezes; Denise Carmona Cara; Camille Chow; T. Bernard Kinane; Edward A. Fisher; Mercedes Balcells; Jacqueline I. Alvarez-Leite; Adam Lacy-Hulbert; Kathryn J. Moore

Objective—Emerging evidence suggests that neuronal guidance cues, typically expressed during development, are involved in both physiological and pathological immune responses. We hypothesized that endothelial expression of such guidance cues may regulate leukocyte trafficking into the vascular wall during atherogenesis. Approach and Results—We demonstrate that members of the netrin, semaphorin, and ephrin family of guidance molecules are differentially regulated under conditions that promote or protect from atherosclerosis. Netrin-1 and semaphorin3A are expressed by coronary artery endothelial cells and potently inhibit chemokine-directed migration of human monocytes. Endothelial expression of these negative guidance cues is downregulated by proatherogenic factors, including oscillatory shear stress and proinflammatory cytokines associated with monocyte entry into the vessel wall. Furthermore, we show using intravital microscopy that inhibition of netrin-1 or semaphorin3A using blocking peptides increases leukocyte adhesion to the endothelium. Unlike netrin-1 and semaphorin3A, the guidance cue ephrinB2 is upregulated under proatherosclerotic flow conditions and functions as a chemoattractant, increasing leukocyte migration in the absence of additional chemokines. Conclusions—The concurrent regulation of negative and positive guidance cues may facilitate leukocyte infiltration of the endothelium through a balance between chemoattraction and chemorepulsion. These data indicate a previously unappreciated role for axonal guidance cues in maintaining the endothelial barrier and regulating leukocyte trafficking during atherogenesis.


Thrombosis and Haemostasis | 2008

Transendothelial migration drives dissociation of plateletmonocyte complexes

Janine M. van Gils; Paula da Costa Martins; Anita Mol; Peter L. Hordijk; Jaap Jan Zwaginga

Monocytes and platelets are both crucially involved in atherogenesis. Importantly, activated platelets bound to circulating monocytes increase adhesion of the monocytes and thus mediate colocalization of both cell types at the vessel wall. We examined the fate of the platelets upon migration of these potentially pro-atherogenic platelet-monocyte complexes (PMC) across activated endothelium. Platelet-monocyte complex migration was studied both quantitatively by means of Transwell filters coated with endothelial cells, as well as qualitatively with different imaging techniques, and in the absence or presence of flow. Upon PMC transendothelial migration, platelets relocate with monocytic P-selectin glycoprotein ligand-1 (PSGL-1) to the rear of the monocyte, detach, and remain at the endothelial surface. Platelet dissociation appeared not to be due to reduced PSGL-1 expression or reduced platelet-binding capacity of the migrated monocytes. In addition, different endothelial matrix proteins with different platelet-binding capacities coated on the Transwell filter, instead of endothelial cells, did not affect PMC dissociation. In contrast, lowering the mechanical stress that PMC experience during transmigration prevented dissociation of platelets. In conclusion, PMC dissociate during transendothelial migration as a result of monocytic PSGL-1 redistribution and mechanical stress. PMC-mediated deposition of activated platelets at sites of vascular inflammation is likely relevant for cardiovascular disease progression or vascular regeneration.


Scientific Reports | 2016

The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

Ruben G. de Bruin; Eric P. van der Veer; Jurriën Prins; Dae Hyun Lee; Martijn J. C. Dane; Huayu Zhang; Marko K. Roeten; Roel Bijkerk; Hetty C. de Boer; Ton J. Rabelink; Anton Jan van Zonneveld; Janine M. van Gils

Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3′UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

Collaboration


Dive into the Janine M. van Gils's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Jan van Zonneveld

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge