Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janis M. Taube is active.

Publication


Featured researches published by Janis M. Taube.


Journal of Clinical Oncology | 2010

Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates

Julie R. Brahmer; Charles G. Drake; Ira Wollner; John D. Powderly; Joel Picus; William H. Sharfman; Elizabeth Stankevich; Alice Pons; Theresa M. Salay; Tracee L. McMiller; Marta M. Gilson; Changyu Wang; Mark J. Selby; Janis M. Taube; Robert A. Anders; Lieping Chen; Alan J. Korman; Drew M. Pardoll; Israel Lowy; Suzanne L. Topalian

PURPOSE Programmed death-1 (PD-1), an inhibitory receptor expressed on activated T cells, may suppress antitumor immunity. This phase I study sought to determine the safety and tolerability of anti-PD-1 blockade in patients with treatment-refractory solid tumors and to preliminarily assess antitumor activity, pharmacodynamics, and immunologic correlates. PATIENTS AND METHODS Thirty-nine patients with advanced metastatic melanoma, colorectal cancer (CRC), castrate-resistant prostate cancer, non-small-cell lung cancer (NSCLC), or renal cell carcinoma (RCC) received a single intravenous infusion of anti-PD-1 (MDX-1106) in dose-escalating six-patient cohorts at 0.3, 1, 3, or 10 mg/kg, followed by a 15-patient expansion cohort at 10 mg/kg. Patients with evidence of clinical benefit at 3 months were eligible for repeated therapy. RESULTS Anti-PD-1 was well tolerated: one serious adverse event, inflammatory colitis, was observed in a patient with melanoma who received five doses at 1 mg/kg. One durable complete response (CRC) and two partial responses (PRs; melanoma, RCC) were seen. Two additional patients (melanoma, NSCLC) had significant lesional tumor regressions not meeting PR criteria. The serum half-life of anti-PD-1 was 12 to 20 days. However, pharmacodynamics indicated a sustained mean occupancy of > 70% of PD-1 molecules on circulating T cells > or = 2 months following infusion, regardless of dose. In nine patients examined, tumor cell surface B7-H1 expression appeared to correlate with the likelihood of response to treatment. CONCLUSION Blocking the PD-1 immune checkpoint with intermittent antibody dosing is well tolerated and associated with evidence of antitumor activity. Exploration of alternative dosing regimens and combinatorial therapies with vaccines, targeted therapies, and/or other checkpoint inhibitors is warranted.


Journal of Clinical Oncology | 2014

Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab

Suzanne L. Topalian; Mario Sznol; David F. McDermott; Harriet M. Kluger; Richard D. Carvajal; William H. Sharfman; Julie R. Brahmer; Donald P. Lawrence; Michael B. Atkins; John D. Powderly; Philip D. Leming; Evan J. Lipson; Igor Puzanov; David C. Smith; Janis M. Taube; Jon M. Wigginton; Georgia Kollia; Ashok Kumar Gupta; Drew M. Pardoll; Jeffrey A. Sosman; F. Stephen Hodi

PURPOSE Programmed cell death 1 (PD-1) is an inhibitory receptor expressed by activated T cells that downmodulates effector functions and limits the generation of immune memory. PD-1 blockade can mediate tumor regression in a substantial proportion of patients with melanoma, but it is not known whether this is associated with extended survival or maintenance of response after treatment is discontinued. PATIENTS AND METHODS Patients with advanced melanoma (N = 107) enrolled between 2008 and 2012 received intravenous nivolumab in an outpatient setting every 2 weeks for up to 96 weeks and were observed for overall survival, long-term safety, and response duration after treatment discontinuation. RESULTS Median overall survival in nivolumab-treated patients (62% with two to five prior systemic therapies) was 16.8 months, and 1- and 2-year survival rates were 62% and 43%, respectively. Among 33 patients with objective tumor regressions (31%), the Kaplan-Meier estimated median response duration was 2 years. Seventeen patients discontinued therapy for reasons other than disease progression, and 12 (71%) of 17 maintained responses off-therapy for at least 16 weeks (range, 16 to 56+ weeks). Objective response and toxicity rates were similar to those reported previously; in an extended analysis of all 306 patients treated on this trial (including those with other cancer types), exposure-adjusted toxicity rates were not cumulative. CONCLUSION Overall survival following nivolumab treatment in patients with advanced treatment-refractory melanoma compares favorably with that in literature studies of similar patient populations. Responses were durable and persisted after drug discontinuation. Long-term safety was acceptable. Ongoing randomized clinical trials will further assess the impact of nivolumab therapy on overall survival in patients with metastatic melanoma.


Science Translational Medicine | 2012

Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape

Janis M. Taube; Robert A. Anders; Geoffrey D. Young; Haiying Xu; Rajni Sharma; Tracee L. McMiller; Shuming Chen; Alison P. Klein; Drew M. Pardoll; Suzanne L. Topalian; Lieping Chen

Activated tumor-infiltrating lymphocytes may induce B7-H1 on melanocytes, which suggests adaptive resistance to antitumor immunity. The Great Escape In the movie The Great Escape, “problem” prisoners with multiple escape attempts are put in an “escape-proof” POW camp, where they use their cleverness and specialized skills to outwit their captors. However, when it comes to escaping, even Steve McQueen doesn’t have anything on cancer cells. Although human cancers express tumor antigens recognized by the immune system, host immune responses often fail to control tumor growth. Taube et al. now explain one way in which tumor cells may adapt to escape from immune surveillance. The researchers found a strong association between expression of the immune-inhibitory molecule B7-H1 (PD-L1) on melanocytes and immune cell infiltration into tumors in patients with different stages of melanoma. The B7-H1+ melanocytes were found directly adjacent to the immune cells, with interferon-γ detected at the melanocyte–immune cell interface. Interferon-γ, which is secreted by the immune cells, induces B7-H1 expression; thus, the tumor may adapt by causing immune cells to trigger their own inhibition. Indeed, patients with B7-H1+ metastatic melanoma had prolonged overall survival when compared with B7-H1− metastatic melanoma patients, perhaps suggesting that B7-H1 expression by the tumors is stimulated by a more successful immune response. It remains to be seen whether blocking B7-H1 in these patients will further improve survival. But it is clear that for both prisoners and tumors, adaptation is the key to escape. Although many human cancers such as melanoma express tumor antigens recognized by T cells, host immune responses often fail to control tumor growth for as yet unexplained reasons. Here, we found a strong association between melanocyte expression of B7-H1 (PD-L1), an immune-inhibitory molecule, and the presence of tumor-infiltrating lymphocytes (TILs) in human melanocytic lesions: 98% of B7-H1+ tumors were associated with TILs compared with only 28% of B7-H1− tumors. Indeed, B7-H1+ melanocytes were almost always localized immediately adjacent to TILs. B7-H1/TIL colocalization was identified not only in melanomas but also in inflamed benign nevi, indicating that B7-H1 expression may represent a host response to tissue inflammation. Interferon-γ, a primary inducer of B7-H1 expression, was detected at the interface of B7-H1+ tumors and TILs, whereas none was found in B7-H1− tumors. Therefore, TILs may actually trigger their own inhibition by secreting cytokines that drive tumor B7-H1 expression. Consistent with this hypothesis, overall survival of patients with B7-H1+ metastatic melanoma was significantly prolonged compared with that of patients with B7-H1− metastatic melanoma. Therefore, induction of the B7-H1/PD-1 pathway may represent an adaptive immune resistance mechanism exerted by tumor cells in response to endogenous antitumor activity and may explain how melanomas escape immune destruction despite endogenous antitumor immune responses. These observations suggest that therapies that block this pathway may benefit patients with B7-H1+ tumors.


Clinical Cancer Research | 2014

Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy

Janis M. Taube; Alison P. Klein; Julie R. Brahmer; Haiying Xu; Xiaoyu Pan; Jung H. Kim; Lieping Chen; Drew M. Pardoll; Suzanne L. Topalian; Robert A. Anders

Purpose: Immunomodulatory drugs differ in mechanism-of-action from directly cytotoxic cancer therapies. Identifying factors predicting clinical response could guide patient selection and therapeutic optimization. Experimental Design: Patients (N = 41) with melanoma, non–small cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), colorectal carcinoma, or castration-resistant prostate cancer were treated on an early-phase trial of anti–PD-1 (nivolumab) at one institution and had evaluable pretreatment tumor specimens. Immunoarchitectural features, including PD-1, PD-L1, and PD-L2 expression, patterns of immune cell infiltration, and lymphocyte subpopulations, were assessed for interrelationships and potential correlations with clinical outcomes. Results: Membranous (cell surface) PD-L1 expression by tumor cells and immune infiltrates varied significantly by tumor type and was most abundant in melanoma, NSCLC, and RCC. In the overall cohort, PD-L1 expression was geographically associated with infiltrating immune cells (P < 0.001), although lymphocyte-rich regions were not always associated with PD-L1 expression. Expression of PD-L1 by tumor cells and immune infiltrates was significantly associated with expression of PD-1 on lymphocytes. PD-L2, the second ligand for PD-1, was associated with PD-L1 expression. Tumor cell PD-L1 expression correlated with objective response to anti–PD-1 therapy, when analyzing either the specimen obtained closest to therapy or the highest scoring sample among multiple biopsies from individual patients. These correlations were stronger than borderline associations of PD-1 expression or the presence of intratumoral immune cell infiltrates with response. Conclusions: Tumor PD-L1 expression reflects an immune-active microenvironment and, while associated other immunosuppressive molecules, including PD-1 and PD-L2, is the single factor most closely correlated with response to anti–PD-1 blockade. Clin Cancer Res; 20(19); 5064–74. ©2014 AACR.


Science | 2017

Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade

Dung T. Le; Jennifer N. Durham; Kellie Nicole Smith; Hao Wang; Bjarne Bartlett; Laveet K. Aulakh; Steve Lu; Holly Kemberling; Cara Wilt; Brandon Luber; Fay Wong; Nilofer Saba Azad; Agnieszka A. Rucki; Daniel A. Laheru; Ross C. Donehower; Atif Zaheer; George A. Fisher; Todd S. Crocenzi; James J. Lee; Tim F. Greten; Austin Duffy; Kristen K. Ciombor; Aleksandra Eyring; Bao H. Lam; Andrew K. Joe; S. Peter Kang; Matthias Holdhoff; Ludmila Danilova; Leslie Cope; Christian Meyer

Predicting responses to immunotherapy Colon cancers with loss-of-function mutations in the mismatch repair (MMR) pathway have favorable responses to PD-1 blockade immunotherapy. In a phase 2 clinical trial, Le et al. showed that treatment success is not just limited to colon cancer (see the Perspective by Goswami and Sharma). They found that a wide range of different cancer types with MMR deficiency also responded to PD-1 blockade. The trial included some patients with pancreatic cancer, which is one of the deadliest forms of cancer. The clinical trial is still ongoing, and around 20% of patients have so far achieved a complete response. MMR deficiency appears to be a biomarker for predicting successful treatment outcomes for several solid tumors and indicates a new therapeutic option for patients harboring MMR-deficient cancers. Science, this issue p. 409; see also p. 358 A pan-cancer biomarker is identified that can predict successful response to cancer immunotherapy in human patients. The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor–1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair–deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair–deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers’ tissue of origin.


Nature Reviews Cancer | 2016

Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy

Suzanne L. Topalian; Janis M. Taube; Robert A. Anders; Drew M. Pardoll

With recent approvals for multiple therapeutic antibodies that block cytotoxic T lymphocyte associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) in melanoma, non-small-cell lung cancer and kidney cancer, and additional immune checkpoints being targeted clinically, many questions still remain regarding the optimal use of drugs that block these checkpoint pathways. Defining biomarkers that predict therapeutic effects and adverse events is a crucial mandate, highlighted by recent approvals for two PDL1 diagnostic tests. Here, we discuss biomarkers for anti-PD1 therapy based on immunological, genetic and virological criteria. The unique biology of the CTLA4 immune checkpoint, compared with PD1, requires a different approach to biomarker development. Mechanism-based insights from such studies may guide the design of synergistic treatment combinations based on immune checkpoint blockade.


Clinical Cancer Research | 2013

Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody

Evan J. Lipson; William H. Sharfman; Charles G. Drake; Ira Wollner; Janis M. Taube; Robert A. Anders; Haiying Xu; Sheng Yao; Alice Pons; Lieping Chen; Drew M. Pardoll; Julie R. Brahmer; Suzanne L. Topalian

Purpose: Results from the first-in-human phase I trial of the anti–programmed death-1 (PD-1) antibody BMS-936558 in patients with treatment-refractory solid tumors, including safety, tolerability, pharmacodynamics, and immunologic correlates, have been previously reported. Here, we provide long-term follow-up on three patients from that trial who sustained objective tumor regressions off therapy, and test the hypothesis that reinduction therapy for late tumor recurrence can be effective. Experimental Design: Three patients with colorectal cancer, renal cell cancer, and melanoma achieved objective responses on an intermittent dosing regimen of BMS-936558. Following cessation of therapy, patients were followed for more than 3 years. A patient with melanoma who experienced a prolonged partial regression followed by tumor recurrence received reinduction therapy. Results: A patient with colorectal cancer experienced a complete response, which is ongoing after 3 years. A patient with renal cell cancer experienced a partial response lasting 3 years off therapy, which converted to a complete response, which is ongoing at 12 months. A patient with melanoma achieved a partial response that was stable for 16 months off therapy; recurrent disease was successfully treated with reinduction anti-PD-1 therapy. Conclusion: These data represent the most prolonged observation to date of patients with solid tumors responding to anti-PD-1 immunotherapy and the first report of successful reinduction therapy following delayed tumor progression. They underscore the potential for immune checkpoint blockade with anti-PD-1 to reset the equilibrium between tumor and the host immune system. Clin Cancer Res; 19(2); 462–8. ©2012 AACR.


The New England Journal of Medicine | 2016

PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma

Paul Nghiem; Shailender Bhatia; Evan J. Lipson; Ragini R. Kudchadkar; Natalie J. Miller; Lakshmanan Annamalai; Sneha Berry; Elliot Chartash; Adil Daud; Steven P. Fling; Philip Friedlander; Harriet M. Kluger; Holbrook Kohrt; Lisa Lundgren; Kim Margolin; Alan Mitchell; Thomas Olencki; Drew M. Pardoll; Sunil Reddy; Erica Shantha; William H. Sharfman; Elad Sharon; Lynn R. Shemanski; Michi M. Shinohara; Joel C. Sunshine; Janis M. Taube; John A. Thompson; Steven M. Townson; Jennifer H. Yearley; Suzanne L. Topalian

BACKGROUND Merkel-cell carcinoma is an aggressive skin cancer that is linked to exposure to ultraviolet light and the Merkel-cell polyomavirus (MCPyV). Advanced Merkel-cell carcinoma often responds to chemotherapy, but responses are transient. Blocking the programmed death 1 (PD-1) immune inhibitory pathway is of interest, because these tumors often express PD-L1, and MCPyV-specific T cells express PD-1. METHODS In this multicenter, phase 2, noncontrolled study, we assigned adults with advanced Merkel-cell carcinoma who had received no previous systemic therapy to receive pembrolizumab (anti-PD-1) at a dose of 2 mg per kilogram of body weight every 3 weeks. The primary end point was the objective response rate according to Response Evaluation Criteria in Solid Tumors, version 1.1. Efficacy was correlated with tumor viral status, as assessed by serologic and immunohistochemical testing. RESULTS A total of 26 patients received at least one dose of pembrolizumab. The objective response rate among the 25 patients with at least one evaluation during treatment was 56% (95% confidence interval [CI], 35 to 76); 4 patients had a complete response, and 10 had a partial response. With a median follow-up of 33 weeks (range, 7 to 53), relapses occurred in 2 of the 14 patients who had had a response (14%). The response duration ranged from at least 2.2 months to at least 9.7 months. The rate of progression-free survival at 6 months was 67% (95% CI, 49 to 86). A total of 17 of the 26 patients (65%) had virus-positive tumors. The response rate was 62% among patients with MCPyV-positive tumors (10 of 16 patients) and 44% among those with virus-negative tumors (4 of 9 patients). Drug-related grade 3 or 4 adverse events occurred in 15% of the patients. CONCLUSIONS In this study, first-line therapy with pembrolizumab in patients with advanced Merkel-cell carcinoma was associated with an objective response rate of 56%. Responses were observed in patients with virus-positive tumors and those with virus-negative tumors. (Funded by the National Cancer Institute and Merck; ClinicalTrials.gov number, NCT02267603.).


American Journal of Pathology | 2011

Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes

Christopher M. Heaphy; Andrea P. Subhawong; Seung-Mo Hong; Michael Goggins; Elizabeth A. Montgomery; Edward Gabrielson; George J. Netto; Jonathan I. Epstein; Tamara L. Lotan; William H. Westra; Ie Ming Shih; Christine A. Iacobuzio-Donahue; Anirban Maitra; Qing K. Li; Charles G. Eberhart; Janis M. Taube; Dinesh Rakheja; Robert J. Kurman; T. C. Wu; Richard Roden; Pedram Argani; Angelo M. De Marzo; Luigi Terracciano; Michael Torbenson; Alan K. Meeker

Approximately 10% to 15% of human cancers lack detectable telomerase activity, and a subset of these maintain telomere lengths by the telomerase-independent telomere maintenance mechanism termed alternative lengthening of telomeres (ALT). The ALT phenotype, relatively common in subtypes of sarcomas and astrocytomas, has rarely been reported in epithelial malignancies. However, the prevalence of ALT has not been thoroughly assessed across all cancer types. We therefore comprehensively surveyed the ALT phenotype in a broad range of human cancers. In total, two independent sets comprising 6110 primary tumors from 94 different cancer subtypes, 541 benign neoplasms, and 264 normal tissue samples were assessed by combined telomere-specific fluorescence in situ hybridization and immunofluorescence labeling for PML protein. Overall, ALT was observed in 3.73% (228/6110) of all tumor specimens, but was not observed in benign neoplasms or normal tissues. This is the first report of ALT in carcinomas arising from the bladder, cervix, endometrium, esophagus, gallbladder, kidney, liver, and lung. Additionally, this is the first report of ALT in medulloblastomas, oligodendrogliomas, meningiomas, schwannomas, and pediatric glioblastoma multiformes. Previous studies have shown associations between ALT status and prognosis in some tumor types; thus, further studies are warranted to assess the potential prognostic significance and unique biology of ALT-positive tumors. These findings may have therapeutic consequences, because ALT-positive cancers are predicted to be resistant to anti-telomerase therapies.


Clinical Cancer Research | 2008

Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck

William H. Westra; Janis M. Taube; Maria Luana Poeta; Shanaz Begum; David Sidransky; Wayne M. Koch

Purpose: Squamous cell carcinomas of the head and neck (HNSCC) often harbor p53 mutations, but p53 protein degradation by the viral oncoprotein E6 may supercede p53 mutations in human papillomavirus 16 (HPV16)–positive tumors. The prevalence of p53 mutations in HPV-positive HNSCCs is indeed lower, but in some tumors these alterations coexist. The purpose of this study was to discern whether HNSCCs differ in the type of p53 mutations as a function of HPV16 status. Experimental Design: The study was nested within a prospective multicenter study (ECOGE 4393/RTOG R9614) of patients with HNSCC treated surgically with curative intent. Tumors from one study center were used to construct a tissue microarray. The tumors were well characterized with respect to p53 mutational status. The tissue microarray was evaluated by HPV16 in situ hybridization. HPV16 analysis was also done on a select group of tonsillar carcinomas known to harbor disruptive p53 mutations defined as stop mutations or nonconservative mutations within the DNA binding domain. Results: HPV16 was detected in 12 of 89 (13%) HNSCCs. By tumor site, HPV16 was detected in 12 of 21 (57%) tumors from the palatine/lingual tonsils, but in none of 68 tumors from nontonsillar sites (P < 0.00001). Both HPV16-positive and HPV16-negative HNSCCs harbored p53 mutations (25% versus 52%), but disruptive mutations were only encountered in HPV16-negative carcinomas. Of seven tonsillar carcinomas with disruptive p53 mutations, none were HPV16 positive, in contrast to HPV16-positive tonsillar carcinomas without disruptive p53 mutations (0% versus 57%; P = 0.008). Conclusions: Although HPV16 and mutated p53 may coexist in a subset of HNSCCs, HPV16 and disruptive p53 mutations seem to be nonoverlapping events. A less calamitous genetic profile, including the absence of disruptive p53 mutations, may underlie the emerging clinical profile of HPV16-positive HNSCC such as improved patient outcome.

Collaboration


Dive into the Janis M. Taube's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiying Xu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Evan J. Lipson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Wang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge