Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janosch P. Heller is active.

Publication


Featured researches published by Janosch P. Heller.


Brain | 2014

Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome

Thomas V. Johnson; Nicholas W. DeKorver; Victoria A. Levasseur; Andrew Osborne; Alessia Tassoni; Barbara Lorber; Janosch P. Heller; Rafael Villasmil; Natalie D. Bull; Keith R. Martin; Stanislav I. Tomarev

The development of neuroprotective strategies to attenuate retinal ganglion cell death could lead to novel therapies for chronic optic neuropathies such as glaucoma. Intravitreal transplantation of mesenchymal stem cells slows retinal ganglion cell death in models of optic nerve injury, but the mechanism of action remains unclear. Here we characterized the neuroprotective effects of mesenchymal stem cells and mesenchymal stem cell-derived factors in organotypic retinal explant culture and an in vivo model of ocular hypertensive glaucoma. Co-culture of rat and human bone marrow-derived mesenchymal stem cells with retinal explants increased retinal ganglion cell survival, after 7 days ex vivo, by ∼2-fold and was associated with reduced apoptosis and increased nerve fibre layer and inner plexiform layer thicknesses. These effects were not demonstrated by co-culture with human or mouse fibroblasts. Conditioned media from mesenchymal stem cells conferred neuroprotection, suggesting that the neuroprotection is mediated, at least partly, by secreted factors. We compared the concentrations of 29 factors in human mesenchymal stem cell and fibroblast conditioned media, and identified 11 enriched in the mesenchymal stem cell secretome. Treatment of retinal explants with a cocktail of these factors conferred retinal ganglion cell neuroprotection, with factors from the platelet-derived growth factor family being the most potent. Blockade of platelet-derived growth factor signalling with neutralizing antibody or with small molecule inhibitors of platelet-derived growth factor receptor kinase or downstream phosphatidylinositol 3 kinase eliminated retinal ganglion cell neuroprotection conferred by mesenchymal stem cell co-culture. Intravitreal injection of platelet-derived growth factor -AA or -AB led to profound optic nerve neuroprotection in vivo following experimental induction of elevated intraocular pressure. These data demonstrate that mesenchymal stem cells secrete a number of neuroprotective proteins and suggest that platelet-derived growth factor secretion in particular may play an important role in mesenchymal stem cell-mediated retinal ganglion cell neuroprotection. Furthermore, platelet-derived growth factor may represent an independent target for achieving retinal ganglion cell neuroprotection.


Glia | 2015

Morphological plasticity of astroglia: Understanding synaptic microenvironment.

Janosch P. Heller; Dmitri A. Rusakov

Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use‐dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area. GLIA 2015;63:2133–2151


PLOS ONE | 2015

Influence of extracellular matrix components on the expression of integrins and regeneration of adult retinal ganglion cells.

Elena Vecino; Janosch P. Heller; Patricia Veiga-Crespo; Keith R. Martin; James W. Fawcett

Purpose Retinal ganglion cells (RGCs) are exposed to injury in a variety of optic nerve diseases including glaucoma. However, not all cells respond in the same way to damage and the capacity of individual RGCs to survive or regenerate is variable. In order to elucidate factors that may be important for RGC survival and regeneration we have focussed on the extracellular matrix (ECM) and RGC integrin expression. Our specific questions were: (1) Do adult RGCs express particular sets of integrins in vitro and in vivo? (2) Can the nature of the ECM influence the expression of different integrins? (3) Can the nature of the ECM affect the survival of the cells and the length or branching complexity of their neurites? Methods Primary RGC cultures from adult rat retina were placed on glass coverslips treated with different substrates: Poly-L-Lysine (PL), or PL plus laminin (L), collagen I (CI), collagen IV (CIV) or fibronectin (F). After 10 days in culture, we performed double immunostaining with an antibody against βIII-Tubulin to identify the RGCs, and antibodies against the integrin subunits: αV, α1, α3, α5, β1 or β3. The number of adhering and surviving cells, the number and length of the neurites and the expression of the integrin subunits on the different substrates were analysed. Results PL and L were associated with the greatest survival of RGCs while CI provided the least favourable conditions. The type of substrate affected the number and length of neurites. L stimulated the longest growth. We found at least three different types of RGCs in terms of their capacity to regenerate and extend neurites. The different combinations of integrins expressed by the cells growing on different substrata suggest that RGCs expressed predominantly α1β1 or α3β1 on L, α1β1 on CI and CIV, and α5β3 on F. The activity of the integrins was demonstrated by the phosphorylation of focal adhesion kinase (FAK). Conclusions Adult rat RGCs can survive and grow in the presence of different ECM tested. Further studies should be done to elucidate the different molecular characteristics of the RGCs subtypes in order to understand the possible different sensitivity of different RGCs to damage in diseases like glaucoma in which not all RGCs die at the same time.


Molecular and Cellular Neuroscience | 2015

Full length talin stimulates integrin activation and axon regeneration.

Chin Lik Tan; Jessica C. F. Kwok; Janosch P. Heller; Rong-Rong Zhao; Richard Eva; James W. Fawcett

Integrin function is regulated by activation involving conformational changes that modulate ligand-binding affinity and downstream signaling. Activation is regulated through inside-out signaling which is controlled by many signaling pathways via a final common pathway through kindlin and talin, which bind to the intracellular tail of beta integrins. Previous studies have shown that the axon growth inhibitory molecules NogoA and chondroitin sulfate proteoglycans (CSPGs) inactivate integrins. Overexpressing kindlin-1 in dorsal root ganglion (DRG) neurons activates integrins, enabling their axons to overcome inhibitory molecules in the environment, and promoting regeneration in vivo following dorsal root crush. Other studies have indicated that expression of the talin head alone or with kindlin can enhance integrin activation. Here, using adult rat DRG neurons, we investigate the effects of overexpressing various forms of talin on axon growth and integrin signaling. We found that overexpression of the talin head activated axonal integrins but inhibited downstream signaling via FAK, and did not promote axon growth. Similarly, co-expression of the talin head and kindlin-1 prevented the growth-promoting effect of kindlin-1, suggesting that the talin head acts as a form of dominant negative for integrin function. Using full-length talin constructs in PC12 cells we observed that neurite growth was enhanced by the expression of wild-type talin and more so by two ‘activated’ forms of talin produced by point mutation (on laminin and aggrecan–laminin substrates). Nevertheless, co-expression of full-length talin with kindlin did not promote neurite growth more than either molecule alone. In vivo, we find that talin is present in PNS axons (sciatic nerve), and also in CNS axons of the corticospinal tract.


Journal of the Renin-Angiotensin-Aldosterone System | 2015

Retinal ganglion cell neuroprotection by an angiotensin II blocker in an ex vivo retinal explant model

Andrew White; Janosch P. Heller; Johahn Leung; Alessia Tassoni; Keith R. Martin

Purpose: An ex vivo organotypic retinal explant model was developed to examine retinal survival mechanisms relevant to glaucoma mediated by the renin angiotensin system in the rodent eye. Methods: Eyes from adult Sprague Dawley rats were enucleated immediately post-mortem and used to make four retinal explants per eye. Explants were treated either with irbesartan (10 µM), vehicle or angiotensin II (2 μM) for four days. Retinal ganglion cell density was estimated by βIII tubulin immunohistochemistry. Live imaging of superoxide formation with dihydroethidium (DHE) was performed. Protein expression was determined by Western blotting, and mRNA expression was determined by RT-PCR. Results: Irbesartan (10 µM) almost doubled ganglion cell survival after four days. Angiotensin II (2 µM) reduced cell survival by 40%. Sholl analysis suggested that irbesartan improved ganglion cell dendritic arborisation compared to control and angiotensin II reduced it. Angiotensin-treated explants showed an intense DHE fluorescence not seen in irbesartan-treated explants. Analysis of protein and mRNA expression determined that the angiotensin II receptor At1R was implicated in modulation of the NADPH-dependent pathway of superoxide generation. Conclusion: Angiotensin II blockers protect retinal ganglion cells in this model and may be worth further investigation as a neuroprotective treatment in models of eye disease.


Molecular and Cellular Neuroscience | 2014

Kinesin KIF4A transports integrin β1 in developing axons of cortical neurons

Tristan G. P. Heintz; Janosch P. Heller; Rong-Rong Zhao; Alfredo Cáceres; Richard Eva; James W. Fawcett

CNS axons have poor regenerative ability compared to PNS axons, and mature axons regenerate less well than immature embryonic axons. The loss of regenerative ability with maturity is accompanied by the setting up of a selective transport filter in axons, restricting the types of molecule that are present. We confirm that integrins (represented by subunits β1 and α5) are present in early cortical axons in vitro but are excluded from mature axons. Ribosomal protein and L1 show selective axonal transport through association with kinesin kif4A; we have therefore examined the hypothesis that integrin transport might also be in association with kif4A. Kif4A is present in all processes of immature cortical neurons cultured at E18, then downregulated by 14days in vitro, coinciding with the exclusion of integrin from axons. Kif4a co-localises with β1 integrin in vesicles in neurons and non-neuronal cells, and the two molecules co-immunoprecipitate. Knockdown of KIF4A expression with shRNA reduced the level of integrin β1 in axons of developing neurons and reduced neurite elongation on laminin, an integrin-dependent substrate. Overexpression of kif4A triggered apoptosis in neuronal and non-neuronal cells. In mature neurons expression of kif4A-GFP at a modest level did not kill the cells, and the kif4A was detectable in their axons. However this was not accompanied by an increase in integrin β1 axonal transport, suggesting that kif4A is not the only integrin transporter, and that integrin exclusion from axons is controlled by factors other than the kif4A level.


Methods of Molecular Biology | 2014

Targeting inhibitory chondroitin sulphate proteoglycans to promote plasticity after injury.

Jessica C. F. Kwok; Janosch P. Heller; Rong-Rong Zhao; James W. Fawcett

Chondroitin sulphate proteoglycans (CSPGs) are one of the major families of inhibitory extracellular matrix molecules in the central nervous system. The expression of various CSPGs is strong during early nervous system development; however, it is downregulated during maturation and up-regulated again after nervous system injury. In vivo injection of an enzyme called chondroitinase ABC, which removes the inhibitory chondroitin sulphate chains on the CSPGs, in the injured area promotes both the regeneration and plasticity of the neurons. Here, we describe the method of in vivo injection of the chondroitinase ABC into the cortex of adult rat brain and the histochemical method to assess the successfulness of the digestion.


Frontiers in Cellular Neuroscience | 2015

A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases

Janosch P. Heller; Jessica C. F. Kwok; Elena Vecino; Keith R. Martin; James W. Fawcett

Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.


Journal of Neuroscience Research | 2017

Probing nano-organization of astroglia with multi-color super-resolution microscopy

Janosch P. Heller; Piotr Michaluk; Kohtaroh Sugao; Dmitri A. Rusakov

Astroglia are essential for brain development, homeostasis, and metabolic support. They also contribute actively to the formation and regulation of synaptic circuits, by successfully handling, integrating, and propagating physiological signals of neural networks. The latter occurs mainly by engaging a versatile mechanism of internal Ca2+ fluctuations and regenerative waves prompting targeted release of signaling molecules into the extracellular space. Astroglia also show substantial structural plasticity associated with age‐ and use‐dependent changes in neural circuitry. However, the underlying cellular mechanisms are poorly understood, mainly because of the extraordinary complex morphology of astroglial compartments on the nanoscopic scale. This complexity largely prevents direct experimental access to astroglial processes, most of which are beyond the diffraction limit of optical microscopy. Here we employed super‐resolution microscopy (direct stochastic optical reconstruction microscopy; dSTORM), to visualize astroglial organization on the nanoscale, in culture and in thin brain slices, as an initial step to understand the structural basis of astrocytic nano‐physiology. We were able to follow nanoscopic morphology of GFAP‐enriched astrocytes, which adapt a flattened shape in culture and a sponge‐like structure in situ, with GFAP fibers of varied diameters. We also visualized nanoscopic astrocytic processes using the ubiquitous cytosolic astrocyte marker proteins S100β and glutamine synthetase. Finally, we overexpressed and imaged membrane‐targeted pHluorin and lymphocyte‐specific protein tyrosine kinase (N‐terminal domain) ‐green fluorescent protein (lck‐GFP), to better understand the molecular cascades underlying some common astroglia‐targeted fluorescence imaging techniques. The results provide novel, albeit initial, insights into the cellular organization of astroglia on the nanoscale, paving the way for function‐specific studies.


Nature Medicine | 2018

Biochemical autoregulatory gene therapy for focal epilepsy

Andreas Lieb; Yichen Qiu; Christine L. Dixon; Janosch P. Heller; Matthew C. Walker; Stephanie Schorge; Dimitri M. Kullmann

Despite the introduction of more than one dozen new antiepileptic drugs in the past 20 years, approximately one-third of people who develop epilepsy continue to have seizures on mono- or polytherapy1. Viral-vector-mediated gene transfer offers the opportunity to design a rational treatment that builds on mechanistic understanding of seizure generation and that can be targeted to specific neuronal populations in epileptogenic foci2. Several such strategies have shown encouraging results in different animal models, although clinical translation is limited by possible effects on circuits underlying cognitive, mnemonic, sensory or motor function. Here, we describe an autoregulatory antiepileptic gene therapy, which relies on neuronal inhibition in response to elevations in extracellular glutamate. It is effective in a rodent model of focal epilepsy and is well tolerated, thus lowering the barrier to clinical translation.A glutamate-gated chloride channel delivered via gene therapy is shown to detect elevated brain glutamate levels and trigger the suppression of neuronal excitability, thereby attenuating seizure activity in two rodent models of epilepsy.

Collaboration


Dive into the Janosch P. Heller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitri A. Rusakov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chin Lik Tan

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Vecino

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge