Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus V. Lindh is active.

Publication


Featured researches published by Markus V. Lindh.


Frontiers in Microbiology | 2016

Local Environmental Conditions Shape Generalist But Not Specialist Components of Microbial Metacommunities in the Baltic Sea

Markus V. Lindh; Johanna Sjöstedt; Michele Casini; Agneta Andersson; Catherine Legrand; Jarone Pinhassi

Marine microbes exhibit biogeographical patterns linked with fluxes of matter and energy. Yet, knowledge of the mechanisms shaping bacterioplankton community assembly across temporal scales remains poor. We examined bacterioplankton 16S rRNA gene fragments obtained from Baltic Sea transects to determine phylogenetic relatedness and assembly processes coupled with niche breadth. Communities were phylogenetically more related over time than expected by chance, albeit with considerable temporal variation. Hence, habitat filtering, i.e., local environmental conditions, rather than competition structured bacterioplankton communities in summer but not in spring or autumn. Species sorting (SS) was the dominant assembly process, but temporal and taxonomical variation in mechanisms was observed. For May communities, Cyanobacteria, Actinobacteria, Alpha- and Betaproteobacteria exhibited SS while Bacteroidetes and Verrucomicrobia were assembled by SS and mass effect. Concomitantly, Gammaproteobacteria were assembled by the neutral model and patch dynamics. Temporal variation in habitat filtering and dispersal highlights the impact of seasonally driven reorganization of microbial communities. Typically abundant Baltic Sea populations such as the NS3a marine group (Bacteroidetes) and the SAR86 and SAR11 clade had the highest niche breadth. The verrucomicrobial Spartobacteria population also exhibited high niche breadth. Surprisingly, variation in bacterioplankton community composition was regulated by environmental factors for generalist taxa but not specialists. Our results suggest that generalists such as NS3a, SAR86, and SAR11 are reorganized to a greater extent by changes in the environment compared to specialists and contribute more strongly to determining overall biogeographical patterns of marine bacterial communities.


Environmental Microbiology Reports | 2013

Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea.

Markus V. Lindh; Lasse Riemann; Federico Baltar; Claudia Romero-Oliva; Paulo S. Salomon; Edna Granéli; Jarone Pinhassi

Despite the paramount importance of bacteria for biogeochemical cycling of carbon and nutrients, little is known about the potential effects of climate change on these key organisms. The consequences of the projected climate change on bacterioplankton community dynamics were investigated in a Baltic Sea spring phytoplankton bloom mesocosm experiment by increasing temperature with 3°C and decreasing pH by approximately 0.4 units via CO₂ addition in a factorial design. Temperature was the major driver of differences in community composition during the experiment, as shown by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rRNA gene fragments. Several bacterial phylotypes belonging to Betaproteobacteria were predominant at 3°C but were replaced by members of the Bacteriodetes in the 6°C mesocosms. Acidification alone had a limited impact on phylogenetic composition, but when combined with increased temperature, resulted in the proliferation of specific microbial phylotypes. Our results suggest that although temperature is an important driver in structuring bacterioplankton composition, evaluation of the combined effects of temperature and acidification is necessary to fully understand consequences of climate change for marine bacterioplankton, their implications for future spring bloom dynamics, and their role in ecosystem functioning.


Environmental Microbiology | 2015

Disentangling seasonal bacterioplankton population dynamics by high‐frequency sampling

Markus V. Lindh; Johanna Sjöstedt; Anders F. Andersson; Federico Baltar; Luisa W. Hugerth; Daniel Lundin; Saraladevi Muthusamy; Catherine Legrand; Jarone Pinhassi

Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.


Genome Biology | 2015

Metagenome-assembled genomes uncover a global brackish microbiome

Luisa W. Hugerth; John Larsson; Johannes Alneberg; Markus V. Lindh; Catherine Legrand; Jarone Pinhassi; Anders F. Andersson

BackgroundMicrobes are main drivers of biogeochemical cycles in oceans and lakes. Although the genome is a foundation for understanding the metabolism, ecology and evolution of an organism, few bacterioplankton genomes have been sequenced, partly due to difficulties in cultivating them.ResultsWe use automatic binning to reconstruct a large number of bacterioplankton genomes from a metagenomic time-series from the Baltic Sea, one of world’s largest brackish water bodies. These genomes represent novel species within typical freshwater and marine clades, including clades not previously sequenced. The genomes’ seasonal dynamics follow phylogenetic patterns, but with fine-grained lineage-specific variations, reflected in gene-content. Signs of streamlining are evident in most genomes, and estimated genome sizes correlate with abundance variation across filter size fractions. Comparing the genomes with globally distributed metagenomes reveals significant fragment recruitment at high sequence identity from brackish waters in North America, but little from lakes or oceans. This suggests the existence of a global brackish metacommunity whose populations diverged from freshwater and marine relatives over 100,000 years ago, long before the Baltic Sea was formed (8000 years ago). This markedly contrasts to most Baltic Sea multicellular organisms, which are locally adapted populations of freshwater or marine counterparts.ConclusionsWe describe the gene content, temporal dynamics and biogeography of a large set of new bacterioplankton genomes assembled from metagenomes. We propose that brackish environments exert such strong selection that lineages adapted to them flourish globally with limited influence from surrounding aquatic communities.


Frontiers in Microbiology | 2015

Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

Markus V. Lindh; Daniela Figueroa; Johanna Sjöstedt; Federico Baltar; Daniel Lundin; Agneta Andersson; Catherine Legrand; Jarone Pinhassi

Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.


Environmental Microbiology | 2013

Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4

Neelam Akram; Joakim Palovaara; Jeremy Forsberg; Markus V. Lindh; Debra L. Milton; Haiwei Luo; José M. González; Jarone Pinhassi

Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.


Frontiers in Microbiology | 2016

Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors

Mireia Bertos-Fortis; Hanna Farnelid; Markus V. Lindh; Michele Casini; Agneta Andersson; Jarone Pinhassi; Catherine Legrand

Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time- series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An “epidemic population structure” (dominance of asingle cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this clusters imultaneously occurred with opportunistic clusters/OTUs, e.g., Nodularia spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formeda consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocynobacteria and the bloom offilamentous/colonialclusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.


Bioresource Technology | 2013

Microbial diversity in a continuous system based on rice husks for biodegradation of the azo dyes Reactive Red 2 and Reactive Black 5

Jörgen Forss; Jarone Pinhassi; Markus V. Lindh; Ulrika Welander

In the present study the degradation of two common azo dyes used in dye houses today, Reactive Black 5 and Reactive Red 2 was evaluated in biofilters. In two experiments, bioreactors performed over 80% decolorization at a hydraulic retention time of only 28.4h with little production of metabolites. Molecular analyses showed a diverse and dynamic bacterial community composition in the bioreactors, including members of the Bacteroidetes, Acinetobacter (Gammaproteobacteria) and Clostridium (Firmicutes) that possess the capacity to reduce azo dyes. Collectively, the results indicate that the development of mixed bacterial communities from natural biomaterials contributes to an efficient and robust degradation performance in bioreactors even at high concentration of dyes.


Environmental Microbiology Reports | 2015

Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

Camilla Fahlgren; Laura Gómez-Consarnau; Julia Zábori; Markus V. Lindh; Radovan Krejci; E. Monica Mårtensson; Douglas Nilsson; Jarone Pinhassi

Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria.


MicrobiologyOpen | 2012

Prokaryotic community structure and respiration during long-term incubations.

Federico Baltar; Markus V. Lindh; Arkadi Parparov; Tom Berman; Jarone Pinhassi

Despite the importance of incubation assays for studies in microbial ecology that frequently require long confinement times, few reports are available in which changes in the assemblage structure of aquatic prokaryotes were monitored during long‐term incubations. We measured rates of dissolved organic carbon degradation and microbial respiration by consumption of dissolved oxygen (DO) in four experiments with Lake Kinneret near‐surface water and, concomitantly, we analyzed the variability in prokaryotic community structure during long‐term dark bottle incubations. During the first 24 h, there were only minor changes in bacterial community composition. Thereafter there were marked changes in the prokaryotic community structure during the incubations. In contrast, oxygen consumption rates (a proxy for both respiration and dissolved organic carbon degradation rates) remained stable for up to 10–23 days. This study is one of the first to examine closely the phylo‐genetic changes that occur in the microbial community of untreated freshwater during long‐term (days) incubations in dark, sealed containers. Novel information on the diversity of the main bacterial phylotypes that may be involved in dissolved organic matter degradation in lake Kinneret is also provided. Our results suggest that, under certain ecological settings, constant community metabolic rates can be maintained as a result of shifts in community composition.

Collaboration


Dive into the Markus V. Lindh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders F. Andersson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luisa W. Hugerth

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Casini

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge