Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaroslav Doležel is active.

Publication


Featured researches published by Jaroslav Doležel.


Annals of Botany | 1998

Plant Genome Size Estimation by Flow Cytometry: Inter-laboratory Comparison

Jaroslav Doležel; Johann Greilhuber; Sergio Lucretti; Armin Meister; Martin A. Lysak; L. Nardi; R. Obermayer

Flow cytometry is a convenient and rapid method that has been used extensively for estimation of nuclear genome size in plants. In contrast to general expectations, results obtained in different laboratories showed some striking discrepancies. The aim of this joint experiment was to test the reliability and reproducibility of methods. Care was taken to avoid a bias due to the quantity of DNA in the nucleus, the procedure for nuclei isolation or the type of instrument. Nuclear DNA content was estimated in nine plant species representing a typical range of genome size (2C = approx. 03-30 pg DNA). Each of the four laboratories involved in this study used a different buffer and/or procedure for nuclei isolation. Two laboratories used arc lamp-based instruments while the other two used laser-based instruments. The results obtained after nuclei staining with propidium iodide (a DNA intercalator) agreed well with those obtained using Feulgen densitometry. On the other hand, results obtained after staining with DAPI (binding preferentially to AT-rich regions) did not agree with those obtained using Feulgen densitometry. Small, but statistically significant, differences were found between data obtained with individual instruments. Differences between the same type of instruments were negligible, while larger differences were observed between lamp- and laserbased instruments. Ratios of fluorescence intensity obtained by laser instruments were higher than those obtained by lamp-based cytometers or by Feulgen densitometry. The results obtained in this study demonstrate that flow cytometry with DNA intercalators is a reliable method for estimation of nuclear genome size in plants. However, the study confirmed an urgent need for an agreement on standards. Given the small but systematic differences between different types of flow cytometers, analysis of very small differences in genome size should be made in the same laboratory and using the same instrument.


The Plant Cell | 2011

Unlocking the Barley Genome by Chromosomal and Comparative Genomics

Klaus F. X. Mayer; Mihaela Martis; Peter E. Hedley; Hana Šimková; Hui Liu; Jenny Morris; Burkhard Steuernagel; Stephan Roessner; Heidrun Gundlach; Marie Kubaláková; Pavla Suchánková; Florent Murat; Marius Felder; Thomas Nussbaumer; Andreas Graner; Jérôme Salse; Takashi R. Endo; Hiroaki Sakai; Tsuyoshi Tanaka; Takeshi Itoh; Kazuhiro Sato; Matthias Platzer; Takashi Matsumoto; Uwe Scholz; Jaroslav Doležel; Robbie Waugh; Nils Stein

Survey sequence and array hybridization data from flow-sorted barley chromosomes were integrated using a comparative genomics model to define an ordered gene map of the barley genome that contains approximately two-thirds of its estimated 32000 genes. The resulting high-resolution framework facilitated a genome-wide structural analysis of the barley genome and a detailed comparative analysis with wheat. We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.


Biologia Plantarum | 1994

Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata andM. balbisiana)

Jaroslav Doležel; M. Doleželová; F. J. Novák

Cell nuclei were isolated from leaf tissues of wild banana (Musa balbisiana, M. acuminata ssp.banksii andM. acuminata ssp.errans) and of the two vegetative clones of diploid cultivar “Pisang Mas”. Relative fluorescence intensity was measured on propidium iodide-stained nuclei by flow cytometry. Nuclei isolated fromGlycine max with known nuclear genome size were used as internal standard to determine nuclear DNA content ofMusa in absolute units. The results of the study showed that the size of nuclear genome ofMusa is smaller than previously estimated. In general, it is smaller in comparison with many other angiosperms. Furthermore, it was found that nuclear DNA content ofM. balbisiana (genome BB) is significantly lower than that ofM. acuminata subspecies and cultivars (genome AA). This finding should permit estimation of genome composition in triploidMusa clones with expected hybrid composition. Flow cytometry is proposed as a useful technique with potential applications in taxonomy, breeding and biotechnology ofMusa.


Nature | 2017

A chromosome conformation capture ordered sequence of the barley genome

Martin Mascher; Heidrun Gundlach; Axel Himmelbach; Sebastian Beier; Sven O. Twardziok; Thomas Wicker; Volodymyr Radchuk; Christoph Dockter; Peter E. Hedley; Joanne Russell; Micha Bayer; Luke Ramsay; Hui Liu; Georg Haberer; Xiao-Qi Zhang; Qisen Zhang; Roberto A. Barrero; Lin Li; Marco Groth; Marius Felder; Alex Hastie; Hana Šimková; Helena Staňková; Jan Vrána; Saki Chan; María Muñoz-Amatriaín; Rachid Ounit; Steve Wanamaker; Daniel M. Bolser; Christian Colmsee

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

Ming-Cheng Luo; Yong Q. Gu; Frank M. You; Karin R. Deal; Yaqin Ma; Yuqin Hu; Naxin Huo; Yi Wang; Ji-Rui Wang; Shiyong Chen; Chad M. Jorgensen; Yong Zhang; Patrick E. McGuire; Shiran Pasternak; Joshua C. Stein; Doreen Ware; Melissa Kramer; W. Richard McCombie; Shahryar F. Kianian; Mihaela Martis; Klaus F. X. Mayer; Sunish K. Sehgal; Wanlong Li; Bikram S. Gill; Michael W. Bevan; Hana Šimková; Jaroslav Doležel; Song Weining; Gerard R. Lazo; Olin D. Anderson

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Chromosome Research | 2007

Chromosome-based genomics in the cereals

Jaroslav Doležel; Marie Kubaláková; Etienne Paux; Jan Bartoš; Catherine Feuillet

The cereals are of enormous importance to mankind. Many of the major cereal species – specifically, wheat, barley, oat, rye, and maize – have large genomes. Early cytogenetics, genome analysis and genetic mapping in the cereals benefited greatly from their large chromosomes, and the allopolyploidy of wheat and oats that has allowed for the development of many precise cytogenetic stocks. In the genomics era, however, large genomes are disadvantageous. Sequencing large and complex genomes is expensive, and the assembly of genome sequence is hampered by a significant content of repetitive DNA and, in allopolyploids, by the presence of homoeologous genomes. Dissection of the genome into its component chromosomes and chromosome arms provides an elegant solution to these problems. In this review we illustrate how this can be achieved by flow cytometric sorting. We describe the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry. We explain how difficulties in the discrimination of specific chromosomes and their arms can be overcome by exploiting extant cytogenetic stocks of polyploid wheat and oats, in particular chromosome deletion and alien addition lines. Finally, we discuss some of the applications of flow-sorted chromosomes, and present some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals, and that it can offer significant potential for the delivery of genome sequencing and gene cloning in these crops.


Planta | 1992

A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L.

Jaroslav Doležel; J. Číhalíková; Sergio Lucretti

A new method is described for the isolation of large quantities of Vicia faba metaphase chromosomes. Roots were treated with 2.5 mM hydroxyurea for 18 h to accumulate meristem tip cells at the G1/S interface. After release from the block, the cells re-entered the cell cycle with a high degree of synchrony. A treatment with 2.5 μM amiprophos-methyl (APM) was used to accumulate mitotic cells in metaphase. The highest metaphase index (53.9%) was achieved when, 6 h after the release from the hydroxyurea block, the roots were exposed to APM for 4 h. The chromosomes were released from formaldehyde-fixed root tips by chopping with a scalpel in LB01 lysis buffer. Both the quality and the quantity of isolated chromosomes, examined microscopically and by flow cytometry, depended on the extent of the fixation. The best results were achieved after fixation with 6% formaldehyde for 30 min. Under these conditions, 1 · 106 chromosomes were routinely obtained from 30 root tips. The chromosomes were morphologically intact and suitable both for high-resolution chromosome studies and for flow-cytometric analysis and sorting. After the addition of hexylene glycol, the chromosome suspensions could be stored at 4° C for six months without any signs of deterioration.


Plant Journal | 2012

Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content

Pilar Hernández; Mihaela Martis; Gabriel Dorado; Matthias Pfeifer; Sergio Gálvez; Sebastian Schaaf; N. Jouve; Hana Šimková; Miroslav Valárik; Jaroslav Doležel; Klaus F. X. Mayer

Wheat is the third most important crop for human nutrition in the world. The availability of high-resolution genetic and physical maps and ultimately a complete genome sequence holds great promise for breeding improved varieties to cope with increasing food demand under the conditions of changing global climate. However, the large size of the bread wheat (Triticum aestivum) genome (approximately 17 Gb/1C) and the triplication of genic sequence resulting from its hexaploid status have impeded genome sequencing of this important crop species. Here we describe the use of mitotic chromosome flow sorting to separately purify and then shotgun-sequence a pair of telocentric chromosomes that together form chromosome 4A (856 Mb/1C) of wheat. The isolation of this much reduced template and the consequent avoidance of the problem of sequence duplication, in conjunction with synteny-based comparisons with other grass genomes, have facilitated construction of an ordered gene map of chromosome 4A, embracing ≥85% of its total gene content, and have enabled precise localization of the various translocation and inversion breakpoints on chromosome 4A that differentiate it from its progenitor chromosome in the A genome diploid donor. The gene map of chromosome 4A, together with the emerging sequences of homoeologous wheat chromosome groups 4, 5 and 7, represent unique resources that will allow us to obtain new insights into the evolutionary dynamics between homoeologous chromosomes and syntenic chromosomal regions.


Nature Genetics | 2013

The wheat powdery mildew genome shows the unique evolution of an obligate biotroph

Thomas Wicker; Simone Oberhaensli; Francis Parlange; Jan P. Buchmann; Margarita Shatalina; Stefan Roffler; Roi Ben-David; Jaroslav Doležel; Hana Šimková; Paul Schulze-Lefert; Pietro D. Spanu; Rémy Bruggmann; Joelle Amselem; Hadi Quesneville; Emiel Ver Loren van Themaat; Timothy Paape; Kentaro K. Shimizu; Beat Keller

Wheat powdery mildew, Blumeria graminis forma specialis tritici, is a devastating fungal pathogen with a poorly understood evolutionary history. Here we report the draft genome sequence of wheat powdery mildew, the resequencing of three additional isolates from different geographic regions and comparative analyses with the barley powdery mildew genome. Our comparative genomic analyses identified 602 candidate effector genes, with many showing evidence of positive selection. We characterize patterns of genetic diversity and suggest that mildew genomes are mosaics of ancient haplogroups that existed before wheat domestication. The patterns of diversity in modern isolates suggest that there was no pronounced loss of genetic diversity upon formation of the new host bread wheat 10,000 years ago. We conclude that the ready adaptation of B. graminis f.sp. tritici to the new host species was based on a diverse haplotype pool that provided great genetic potential for pathogen variation.


Cytogenetic and Genome Research | 2010

Development of chromosome-specific BAC resources for genomics of bread wheat.

Jan Šafář; Hana Šimková; Marie Kubaláková; Jarmila Číhalíková; Pavla Suchánková; Jan Bartoš; Jaroslav Doležel

The large bread wheat genome (1C ∼ 17 Gbp) contains a preponderance of repetitive DNA and the species is polyploid. These characteristics together serve to hamper the molecular analysis of the wheat genome. Its complexity can, however, be reduced by using flow cytometry to isolate individual chromosomes, and these can be exploited to construct chromosome-specific BAC libraries. Such libraries simplify the task of physical map construction, positional cloning and the targeted development of genetic markers. Rapid improvements in the efficiency and cost of DNA sequencing provide an opportunity to contemplate sequencing the wheat genome by preparing sequence-ready physical maps for each chromosome or chromosome arm in turn. The quality of the chromosome-specific libraries depends on their chromosome coverage and the mean insert size. First-generation libraries suffered from a relatively low mean insert size, but improvements to the protocol have generated a second wave of libraries with a significantly increased mean insert size and better chromosome coverage. Each chromosome (arm)-specific library is composed of a manageable number of clones, and so represents a practical tool in the area of wheat genomics.

Collaboration


Dive into the Jaroslav Doležel's collaboration.

Top Co-Authors

Avatar

Hana Šimková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Vrána

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Šafář

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Jarmila Číhalíková

Czechoslovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Feuillet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jiří Macas

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Martin A. Lysak

Central European Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge