Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarrett E. K. Byrnes is active.

Publication


Featured researches published by Jarrett E. K. Byrnes.


Trends in Ecology and Evolution | 2013

Raising money for scientific research through crowdfunding

Rachel E. Wheat; Yiwei Wang; Jarrett E. K. Byrnes; Jai Ranganathan

In this article we discuss the utility of crowdfunding from the perspective of individual scientists or laboratory groups looking to fund research. We address some of the main factors determining the success of crowdfunding campaigns, and compare this approach with the use of traditional funding sources.


Ecology | 2013

Effects of predator richness on prey suppression: a meta‐analysis

John N. Griffin; Jarrett E. K. Byrnes; Bradley J. Cardinale

It is well established that species richness of primary producers and primary consumers can enhance efficiency of resource uptake and biomass production of respective trophic levels. At the level of secondary consumers (predators), however, conclusions about the functional role of biodiversity have been mixed. We take advantage of a recent surge of published experiments (totaling 46 since 2005) to both evaluate general effects of predator richness on aggregate prey suppression (top-down control) and explore sources of variability among experiments. Our results show that, across experiments, predator richness enhances prey suppression relative to the average single predator species (mean richness effect), but not the best-performing species. Mean richness effects in predator experiments were stronger than those for primary producers and detritivores, suggesting that relationships between richness and function may increase with trophic height in food webs. The strength of mean predator richness effects increased with the spatial and temporal scale of experiments, and the taxonomic distinctness (TD, used as a proxy of phylogenetic diversity) of species present. This latter result suggests that TD captures important aspects of functional differentiation among predators and that measures of biodiversity that go beyond species richness may help to better predict the effects of predator species loss.


Ecology | 2016

Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity.

Andrew Gonzalez; Bradley J. Cardinale; Ginger R. H. Allington; Jarrett E. K. Byrnes; K. Arthur Endsley; Daniel G. Brown; David U. Hooper; Forest Isbell; Mary I. O'Connor; Michel Loreau

Global species extinction rates are orders of magnitude above the background rate documented in the fossil record. However, recent data syntheses have found mixed evidence for patterns of net species loss at local spatial scales. For example, two recent data meta-analyses have found that species richness is decreasing in some locations and is increasing in others. When these trends are combined, these papers argued there has been no net change in species richness, and suggested this pattern is globally representative of biodiversity change at local scales. Here we reanalyze results of these data syntheses and outline why this conclusion is unfounded. First, we show the datasets collated for these syntheses are spatially biased and not representative of the spatial distribution of species richness or the distribution of many primary drivers of biodiversity change. This casts doubt that their results are representative of global patterns. Second, we argue that detecting the trend in local species richness is very difficult with short time series and can lead to biased estimates of change. Reanalyses of the data detected a signal of study duration on biodiversity change, indicating net biodiversity loss is most apparent in studies of longer duration. Third, estimates of species richness change can be biased if species gains during post-disturbance recovery are included without also including species losses that occurred during the disturbance. Net species gains or losses should be assessed with respect to common baselines or reference communities. Ultimately, we need a globally coordinated effort to monitor biodiversity so that we can estimate and attribute human impacts as causes of biodiversity change. A combination of technologies will be needed to produce regularly updated global datasets of local biodiversity change to guide future policy. At this time the conclusion that there is no net change in local species richness is not the consensus state of knowledge.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Global patterns of kelp forest change over the past half-century

Kira A. Krumhansl; Daniel K. Okamoto; Andrew Rassweiler; Mark Novak; John J. Bolton; Kyle C. Cavanaugh; Sean D. Connell; Craig R. Johnson; Brenda Konar; Sd Ling; Fiorenza Micheli; Kjell Magnus Norderhaug; Alejandro Pérez-Matus; Isabel Sousa-Pinto; Daniel C. Reed; Anne K. Salomon; Thomas Wernberg; Robert J. Anderson; Nevell S. Barrett; Alejandro H. Buschmann; Mark H. Carr; Jennifer E. Caselle; Sandrine Derrien-Courtel; Graham J. Edgar; Matthew S. Edwards; James A. Estes; Claire Goodwin; Michael C. Kenner; David J. Kushner; Frithjof E. Moy

Significance Kelp forests support diverse and productive ecological communities throughout temperate and arctic regions worldwide, providing numerous ecosystem services to humans. Literature suggests that kelp forests are increasingly threatened by a variety of human impacts, including climate change, overfishing, and direct harvest. We provide the first globally comprehensive analysis of kelp forest change over the past 50 y, identifying a high degree of variation in the magnitude and direction of change across the geographic range of kelps. These results suggest region-specific responses to global change, with local drivers playing an important role in driving patterns of kelp abundance. Increased monitoring aimed at understanding regional kelp forest dynamics is likely to prove most effective for the adaptive management of these important ecosystems. Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = −0.018 y−1). Our analysis identified declines in 38% of ecoregions for which there are data (−0.015 to −0.18 y−1), increases in 27% of ecoregions (0.015 to 0.11 y−1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Science | 2015

Paleontological baselines for evaluating extinction risk in the modern oceans

Seth Finnegan; Sean C. Anderson; Paul G. Harnik; Carl Simpson; Derek P. Tittensor; Jarrett E. K. Byrnes; Zoe V. Finkel; David R. Lindberg; Lee Hsiang Liow; Rowan Lockwood; Heike K. Lotze; Craig R. McClain; Jenny L. McGuire; Aaron O'Dea; John M. Pandolfi

Recognizing the threat of additive risk Humans are accelerating the extinction rates of species in both terrestrial and marine environments. However, species extinctions have occurred across time for a variety of other reasons. Finnegan et al. looked at the extinction rates across marine genera (groups of species) over the past 23 million years to determine intrinsic extinction rates and what traits or regions correspond to the highest rates. Combining patterns of intrinsic extinction with regions of high anthropogenic threat revealed taxa and areas, particularly in the tropics, where the risk of extinction will be especially high. Science, this issue p. 567 Fossils reveal patterns of extinction in marine species, past and present. Marine taxa are threatened by anthropogenic impacts, but knowledge of their extinction vulnerabilities is limited. The fossil record provides rich information on past extinctions that can help predict biotic responses. We show that over 23 million years, taxonomic membership and geographic range size consistently explain a large proportion of extinction risk variation in six major taxonomic groups. We assess intrinsic risk—extinction risk predicted by paleontologically calibrated models—for modern genera in these groups. Mapping the geographic distribution of these genera identifies coastal biogeographic provinces where fauna with high intrinsic risk are strongly affected by human activity or climate change. Such regions are disproportionately in the tropics, raising the possibility that these ecosystems may be particularly vulnerable to future extinctions. Intrinsic risk provides a prehuman baseline for considering current threats to marine biodiversity.


Global Change Biology | 2014

Combined climate‐ and prey‐mediated range expansion of Humboldt squid (Dosidicus gigas), a large marine predator in the California Current System

Julia S. Stewart; Elliott L. Hazen; Steven J. Bograd; Jarrett E. K. Byrnes; David G. Foley; William F. Gilly; Bruce H. Robison; John C. Field

Climate-driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator-prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long-term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean.


Frontiers in Microbiology | 2013

Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments.

Jennifer L. Bowen; Jarrett E. K. Byrnes; David Weisman; Cory Colaneri

Functional gene pyrosequencing is emerging as a useful tool to examine the diversity and abundance of microbes that facilitate key biogeochemical processes. One such process, denitrification, is of particular importance because it converts fixed nitrate (NO−3) to N2 gas, which returns to the atmosphere. In nitrogen limited salt marshes, removal of NO−3 prior to entering adjacent waters helps prevent eutrophication. Understanding the dynamics of salt marsh microbial denitrification is thus imperative for the maintenance of healthy coastal ecosystems. We used pyrosequencing of the nirS gene to examine the denitrifying community response to fertilization in experimentally enriched marsh plots. A key challenge in the analysis of sequence data derived from pyrosequencing is understanding whether small differences in gene sequences are ecologically meaningful. We applied a novel approach from information theory to determine that the optimal similarity level for clustering DNA sequences into OTUs, while still capturing the ecological complexity of the system, was 88%. With this clustering, phylogenetic analysis yielded 6 dominant clades of denitrifiers, the largest of which, accounting for more than half of all the sequences collected, had no close cultured representatives. Of the 638 OTUs identified, only 11 were present in all plots and no single OTU was dominant. We did, however, find a large number of specialist OTUs that were present only in a single plot. The high degree of endemic OTUs, while accounting for a large proportion of the nirS diversity in the plots, were found in lower abundance than the generalist taxa. The proportion of specialist taxa increased with increasing supply of nutrients, suggesting that addition of fertilizer may create conditions that expand the niche space for denitrifying organisms and may enhance the genetic capacity for denitrification.


Current Biology | 2015

Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts

Robin Elahi; Mary I. O’Connor; Jarrett E. K. Byrnes; Jillian Dunic; Britas Klemens Eriksson; Marc J.S. Hensel; Patrick J. Kearns

The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales. Reconciling the threat of global biodiversity loss with recent evidence of stability at fine spatial scales is a major challenge and requires a nuanced approach to biodiversity change that integrates ecological understanding. With a new dataset of 471 diversity time series spanning from 1962 to 2015 from marine coastal ecosystems, we tested (1) whether biodiversity changed at local scales in recent decades, and (2) whether we can ignore ecological context (e.g., proximate human impacts, trophic level, spatial scale) and still make informative inferences regarding local change. We detected a predominant signal of increasing species richness in coastal systems since 1962 in our dataset, though net species loss was associated with localized effects of anthropogenic impacts. Our geographically extensive dataset is unlikely to be a random sample of marine coastal habitats; impacted sites (3% of our time series) were underrepresented relative to their global presence. These local-scale patterns do not contradict the prospect of accelerating global extinctions but are consistent with local species loss in areas with direct human impacts and increases in diversity due to invasions and range expansions in lower impact areas. Attempts to detect and understand local biodiversity trends are incomplete without information on local human activities and ecological context.


PLOS ONE | 2014

To crowdfund research, scientists must build an audience for their work

Jarrett E. K. Byrnes; Jai Ranganathan; Barbara Louise Endemaño Walker; Zen Faulkes

As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for ones work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientists abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or fanbase and actively engaging with that audience as well as seeking to broaden the reach of ones audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientists project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Multifunctionality does not imply that all functions are positively correlated

Jarrett E. K. Byrnes; Jonathan S. Lefcheck; Lars Gamfeldt; John N. Griffin; Forest Isbell; Andy Hector

The recent publication by Bradford et al. (1) argues that indices of ecosystem multifunctionality—the simultaneous performance of multiple ecosystem functions (2)—are only useful if all component functions “respond to community change in a positive correlated fashion.” We contend that this argument fundamentally misinterprets the concept of ecosystem multifunctionality.

Collaboration


Dive into the Jarrett E. K. Byrnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary I. O'Connor

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Gamfeldt

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Aaron O'Dea

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Craig R. McClain

National Evolutionary Synthesis Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David U. Hooper

Western Washington University

View shared research outputs
Researchain Logo
Decentralizing Knowledge