Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David U. Hooper is active.

Publication


Featured researches published by David U. Hooper.


Ecological Monographs | 2005

EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE

David U. Hooper; F. S. Chapin; John J. Ewel; Andy Hector; P. Inchausti; Sandra Lavorel; John H. Lawton; David M. Lodge; Michel Loreau; Shahid Naeem; Bernhard Schmid; Heikki Setälä; A. J. Symstad; J. Vandermeer; David A. Wardle

Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earths biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earths ecosystems and the diverse biota they contain.


Nature | 2000

Consequences of changing biodiversity

F. Stuart Chapin; Erika S. Zavaleta; Valerie T. Eviner; Rosamond L. Naylor; Peter M. Vitousek; Heather L. Reynolds; David U. Hooper; Sandra Lavorel; Osvaldo E. Sala; Sarah E. Hobbie; Michelle C. Mack; Sandra Díaz

Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental change. This has profound consequences for services that humans derive from ecosystems. The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.


Nature | 2012

Biodiversity loss and its impact on humanity

Bradley J. Cardinale; J. Emmett Duffy; Andrew Gonzalez; David U. Hooper; Charles Perrings; Patrick Venail; Anita Narwani; Georgina M. Mace; David Tilman; David A. Wardle; Ann P. Kinzig; Gretchen C. Daily; Michel Loreau; James B. Grace; Anne Larigauderie; Diane S. Srivastava; Shahid Naeem

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Nature | 2012

A global synthesis reveals biodiversity loss as a major driver of ecosystem change

David U. Hooper; E. Carol Adair; Bradley J. Cardinale; Jarrett E. Byrnes; Bruce A. Hungate; Kristin L. Matulich; Andrew Gonzalez; J. Emmett Duffy; Lars Gamfeldt; Mary I. O’Connor

Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth’s ecosystems. Further species loss will accelerate change in ecosystem processes, but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition—two processes important in all ecosystems—are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21–40%) reduced plant production by 5–10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41–60%) had effects rivalling those of ozone, acidification, elevated CO2 and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO2 and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts.


American Journal of Botany | 2011

The functional role of producer diversity in ecosystems

Bradley J. Cardinale; Kristin L. Matulich; David U. Hooper; Jarrett E. Byrnes; Emmett Duffy; Lars Gamfeldt; Patricia Balvanera; Mary I. O'Connor; Andrew Gonzalez

Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the worlds biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems.


Ecological Monographs | 1998

EFFECTS OF PLANT COMPOSITION AND DIVERSITY ON NUTRIENT CYCLING

David U. Hooper; Peter M. Vitousek

We evaluated the effects of plant functional group richness on seasonal patterns of soil nitrogen and phosphorus cycling, using serpentine grassland in south San Jose, California. We established experimental plots with four functional types of plants: early-season annual forbs (E), late-season annual forbs (L), nitrogen-fixers (N), and perennial bunchgrasses (P). These groups differ in several traits relevant to nutrient cycling, including phenology, rooting depth, root:shoot ratio, size, and leaf C:N content. Two or three species of each group were planted in single functional group (SFG) treatments, and in two-, three-, and four-way combinations of functional groups. We analyzed available nutrient pool sizes, microbial biomass nitrogen and phosphorus, microbial nitrogen immobilization, nitrification rates, and leaching losses. We used an index of “relative resource use” that incorporates the effects of plants on pool sizes of several depletable soil resources: inorganic nitrogen in all seasons, availabl...


Ecology | 1998

THE ROLE OF COMPLEMENTARITY AND COMPETITION IN ECOSYSTEM RESPONSES TO VARIATION IN PLANT DIVERSITY

David U. Hooper

To investigate how plant diversity affects ecosystem-level processes such as primary production and nutrient cycling, I established an experimental plant diversity gradient in serpentine grassland using four functional groups of plants: early season annual forbs (E), late season annual forbs (L), perennial bunchgrasses (P), and nitrogen fixers (N). These groups differ in growth form, phenology, and other traits relevant to nutrient cycling (e.g., rooting depth, litter C:N ratio). Two or three species of each type were planted in single-group treatments, and in two-, three-, and four-way combinations, giving a range of richness from zero to nine species. I tested the hypothesis that, because of complementary resource use, increasing functional group diversity will lead to higher net primary production. At the scale of this experiment (α-diversity and yearly production), more diverse treatments were not necessarily the most productive. Live plant biomass varied more within than among levels of diversity. In most two-, three-, and four-way mixtures of functional groups, overall productivity did not differ significantly from the average of the yields of component one-group treatments. This pattern apparently resulted from competition: early season annuals and late season annuals reduced the biomass of perennial bunchgrasses (the most productive group in monoculture) below levels expected from monoculture yields. Relative Yield Totals (RYT) indicated complementary resource use in the EL and LP two-way and ELPN four-way mixtures. In the EL mixture, complementarity appeared to result from temporal rather than spatial partitioning of resources. Because of shifts in root:shoot ratio in mixtures, however, only the LP treatment had consistently significant RYT >1 when assessing total (roots plus shoots) productivity and nitrogen yield. These results show that (1) composition (the identity of the species present) can be at least as important as richness (the number of species present) in effects on ecosystem processes; (2) competition during critical parts of the growing season may prevent absolute increases in net primary production with increasing diversity, despite complementary resource use at other times of the year; and (3) shifts in belowground allocation in species mixtures can have significant effects on estimates of productivity and resource use as species diversity changes.


Biogeochemistry | 1999

Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation

David U. Hooper; Loretta C. Johnson

We investigated the relationship between plant nitrogen limitation and water availability in dryland ecosystems. We tested the hypothesis that at lower levels of annual precipitation, aboveground net primary productivity (ANPP) is limited primarily by water whereas at higher levels of precipitation, it is limited primarily by nitrogen. Using a literature survey of fertilization experiments in arid, semi-arid, and subhumid ecosystems, we investigated the response of ANPP to nitrogen addition as a function of variation in precipitation across geographic gradients, as well as across year-to-year variation in precipitation within sites. We used four different indices to assess the degree of N limitation: (1) Absolute Increase of plant production in response to fertilization (the slope of ANPP vs. amount of added N at different levels of annual precipitation); (2) Relative Response (the percent increase in fertilized over control ANPP at different levels of N addition); (3) Fertilizer Use Efficiency (FUE, the absolute gain in productivity per amount of fertilizer N), and (4) Maximum Response (the greatest absolute increase in ANPP at saturating levels of N addition). Relative Response to fertilization did not significantly increase with increasing precipitation either across the geographic gradient or across year-to-year variation within sites. Nor did the Maximum Response to fertilization increase with increasing precipitation across the geographic gradient. On the other hand, there was a significant increase in the Absolute Increase and FUE indices with both geographical and temporal variation in precipitation. Together, these results indicate that there is not necessarily a shift of primary limitation from water to N across the geographic water availability gradient. Instead, our results support the hypothesis of co-limitation. The apparently contradictory results from the four indices of N limitation can best be explained by an integration of plant ecophysiological, community, and ecosystem mechanisms whereby plants are co-limited by multiple resources, species shifts occur in response to changing resource levels, and nitrogen and water availability are tightly linked through biogeochemical feedbacks.


Archive | 1994

Biological Diversity and Terrestrial Ecosystem Biogeochemistry

Peter M. Vitousek; David U. Hooper

The effect of biological diversity on ecosystem biogeochemistry has not been widely studied in recent years, due in part to widespread recognition that our understanding of population/ecosystem interactions was insufficient to sustain the pioneering discussions of the late 1960s (cf. Woodwell and Smith 1969). Indeed, the fields of population biology and ecosystem studies largely pursued different approaches throughout much of the 1970s and 1980s. The gap between population and ecosystem ecology is now narrowing substantially, and the linked nature of human alterations to both biological diversity and ecosystem functioning is increasingly appreciated. These developments have led to renewed interest in the connections between diversity and many aspects of ecosystem function.


BioScience | 2001

Frontiers of Ecology

John N. Thompson; O. J. Reichman; Peter J. Morin; Gary A. Polis; Mary E. Power; Robert W. Sterner; Carol A. Couch; Laura Gough; Robert D. Holt; David U. Hooper; Felicia Keesing; Charles R. Lovell; Bruce T. Milne; Manuel C. Molles; David W. Roberts; Sharon Y. Strauss

integration and collaboration as we meet the challenge of understanding the great complexity of biological systems. Ecological subdisciplines are rapidly combining and incorporating other biological, physical, mathematical, and sociological disciplines. The burgeoning base of theoretical and empirical work, made possible by new methods, technologies, and funding opportunities, is providing the opportunity to reach robust answers to major ecological questions. In December 1999 the National Science Foundation convened a white paper committee to evaluate what we know and do not know about important ecological processes, what hurdles currently hamper our progress, and what intellectual and conceptual interfaces need to be encouraged. The committee distilled the discussion into four frontiers in research on the ecological structure of the earth’s biological diversity and the ways in which ecological processes continuously shape that structure (i.e., ecological dynamics). This article summarizes the discussions of those frontiers and explains why they are crucial to our understanding of how ecological processes shape patterns and dynamics of global biocomplexity. The frontiers are 1. Dynamics of coalescence in complex communities 2. Evolutionary and historical determinants of ecological processes: The role of ecological memory 3. Emergent properties of complex systems: Biophysical constraints and evolutionary attractors 4. Ecological topology: Defining the spatiotemporal domains of causality for ecological structure and processes Each of the four research frontiers takes a different approach to the overall ecological dynamics of biocomplexity, and all require integration and collaboration among those approaches. These overlapping frontiers themselves are not necessarily new. Within each frontier, however, are emerging questions and approaches that will help us understand how ecological processes are interconnected over multiple spatial and temporal scales, from local community structure to global patterns.

Collaboration


Dive into the David U. Hooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Tilman

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Loreau

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar

David A. Wardle

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. S. Chapin

University of California

View shared research outputs
Top Co-Authors

Avatar

Ann P. Kinzig

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge