Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarrod McClean is active.

Publication


Featured researches published by Jarrod McClean.


Nature Communications | 2014

A variational eigenvalue solver on a photonic quantum processor

Alberto Peruzzo; Jarrod McClean; Peter Shadbolt; Man-Hong Yung; Xiao-Qi Zhou; Peter J. Love; Alán Aspuru-Guzik; Jeremy L. O'Brien

Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future.


Physical Review X | 2016

Scalable Quantum Simulation of Molecular Energies

P. O'Malley; Ryan Babbush; Ian D. Kivlichan; Jonathan Romero; Jarrod McClean; R. Barends; J. Kelly; P. Roushan; Andrew Tranter; Nan Ding; B. Campbell; Yu Chen; Z. Chen; Ben Chiaro; A. Dunsworth; Austin G. Fowler; E. Jeffrey; A. Megrant; Josh Mutus; Charles Neil; Chris Quintana; D. Sank; T. White; J. Wenner; A. Vainsencher; Peter V. Coveney; Peter Love; Hartmut Neven; Alán Aspuru-Guzik; John M. Martinis

We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.


Scientific Reports | 2015

From transistor to trapped-ion computers for quantum chemistry.

Man-Hong Yung; J. Casanova; A. Mezzacapo; Jarrod McClean; Lucas Lamata; Alán Aspuru-Guzik; E. Solano

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.


Journal of Physical Chemistry Letters | 2014

Exploiting Locality in Quantum Computation for Quantum Chemistry

Jarrod McClean; Ryan Babbush; Peter Love; Alán Aspuru-Guzik

Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.


Proceedings of SPIE | 2013

A preliminary cyber-physical security assessment of the Robot Operating System (ROS)

Jarrod McClean; Christopher J. Stull; Charles R Farrar; David Mascareñas

Over the course of the last few years, the Robot Operating System (ROS) has become a highly popular software framework for robotics research. ROS has a very active developer community and is widely used for robotics research in both academia and government labs. The prevalence and modularity of ROS cause many people to ask the question: “What prevents ROS from being used in commercial or government applications?” One of the main problems that is preventing this increased use of ROS in these applications is the question of characterizing its security (or lack thereof). In the summer of 2012, a crowd sourced cyber-physical security contest was launched at the cyber security conference DEF CON 20 to begin the process of characterizing the security of ROS. A small-scale, car-like robot was configured as a cyber-physical security “honeypot” running ROS. DEFFCON-20 attendees were invited to find exploits and vulnerabilities in the robot while network traffic was collected. The results of this experiment provided some interesting insights and opened up many security questions pertaining to deployed robotic systems. The Federal Aviation Administration is tasked with opening up the civil airspace to commercial drones by September 2015 and driverless cars are already legal for research purposes in a number of states. Given the integration of these robotic devices into our daily lives, the authors pose the following question: “What security exploits can a motivated person with little-to-no experience in cyber security execute, given the wide availability of free cyber security penetration testing tools such as Metasploit?” This research focuses on applying common, low-cost, low-overhead, cyber-attacks on a robot featuring ROS. This work documents the effectiveness of those attacks.


Bulletin of the American Physical Society | 2017

Low Depth Quantum Simulation of Electronic Structure

Ryan Babbush; Nathan Wiebe; Jarrod McClean; James McClain; Hartmut Neven; Garnet Kin-Lic Chan

Quantum simulation of the electronic structure problem is one of the most researched applications of quantum computing. The majority of quantum algorithms for this problem encode the wavefunction using N Gaussian orbitals, leading to Hamiltonians with O(N^(4)) second-quantized terms. We avoid this overhead and extend methods to the condensed phase by utilizing a dual form of the plane wave basis which diagonalizes the potential operator, leading to a Hamiltonian representation with O(N^(2)) second-quantized terms. Using this representation we can implement single Trotter steps of the Hamiltonians with linear gate depth on a planar lattice. Properties of the basis allow us to deploy Trotter and Taylor series based simulations with respective circuit depths of O(N^(7/2)) and O(N^(8/3)) for fixed charge densities - both are large asymptotic improvements over all prior results. Variational algorithms also require significantly fewer measurements to find the mean energy in this basis, ameliorating a primary challenge of that approach. We conclude with a proposal to simulate the uniform electron gas (jellium) using a low depth variational ansatz realizable on near-term quantum devices. From these results we identify simulations of low density jellium as a promising first setting to explore quantum supremacy in electronic structure.


RSC Advances | 2015

Compact wavefunctions from compressed imaginary time evolution

Jarrod McClean; Alán Aspuru-Guzik

Simulation of quantum systems promises to deliver physical and chemical predictions for the frontiers of technology. Unfortunately, the exact representation of these systems is plagued by the exponential growth of dimension with the number of particles, or colloquially, the curse of dimensionality. The success of approximation methods has hinged on the relative simplicity of physical systems with respect to the exponentially complex worst case. Exploiting this relative simplicity has required detailed knowledge of the physical system under study. In this work, we introduce a general and efficient black box method for many-body quantum systems that utilizes technology from compressed sensing to find the most compact wavefunction possible without detailed knowledge of the system. It is a Multicomponent Adaptive Greedy Iterative Compression (MAGIC) scheme. No knowledge is assumed in the structure of the problem other than correct particle statistics. This method can be applied to many quantum systems such as spins, qubits, oscillators, or electronic systems. As an application, we use this technique to compute ground state electronic wavefunctions of hydrogen fluoride and recover 98% of the basis set correlation energy or equivalently 99.996% of the total energy with


Proceedings of the National Academy of Sciences of the United States of America | 2013

Feynman's clock, a new variational principle, and parallel-in-time quantum dynamics.

Jarrod McClean; John Parkhill; Alán Aspuru-Guzik

50


New Journal of Physics | 2018

Application of Fermionic Marginal Constraints to Hybrid Quantum Algorithms

Nicholas Rubin; Jarrod McClean; Ryan Babbush

configurations out of a possible


Physical Review A | 2015

Clock quantum Monte Carlo technique: An imaginary-time method for real-time quantum dynamics

Jarrod McClean; Alán Aspuru-Guzik

10^7

Collaboration


Dive into the Jarrod McClean's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garnet Kin-Lic Chan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge