Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason B. Boyle is active.

Publication


Featured researches published by Jason B. Boyle.


Acta Psychologica | 2010

Coding of on-line and pre-planned movement sequences

Attila J. Kovacs; Jason B. Boyle; Nicole Grutmatcher; Charles H. Shea

Recent experiments have demonstrated that complex multi-element movement sequences were coded in visual-spatial coordinates even after extensive practice, while relatively simple spatial-temporal movement sequences are coded in motor coordinates after a single practice session. The purpose of the present experiment was to determine if the control process rather than the difficulty of the sequence played a role in determining the pattern of effector transfer. To accomplish this, different concurrent feedback conditions were provided to two groups of participants during practice of the same movement sequence. The results indicated that when concurrent visual feedback was provided during the production of the movement, which was thought to encourage on-line control, the participants performed transfer tests with the contra-lateral limb better when the visual-spatial coordinates were reinstated than when the motor coordinates were reinstated. When concurrent visual feedback was not provided, which was thought to encourage pre-planned control, the opposite was observed. The data are consistent with the hypothesis that the mode of control dictates the coordinate system used to code the movement sequence rather than sequence difficulty or stage of practice as has been proposed.


Experimental Brain Research | 2012

Bimanual Fitts’ tasks: Kelso, Southard, and Goodman, 1979 revisited

Charles H. Shea; Jason B. Boyle; Attila J. Kovacs

The experiment was designed to replicate and extend to an integrated feedback condition the pattern of movement time results found by Kelso et al. (J Exp Psychol Hum Percept Perform 5:229–238, 1979a, Science 204:1029–1031, 1979b) where the simultaneous movement of one hand to a low ID target and the other to a higher ID target indicated “a tight coordinate coupling between the hands” (p. 229). In the present experiment, a control group was provided feedback that depicted the independent movement of the two limbs under low and higher indexes of difficulty (ID). A Lissajous group was provided integrated feedback in the form of a Lissajous plot. The results indicated a pattern of results for the control and Lissajous groups similar to that found by Kelso et al. for one and two-limb movements to the same difficulty targets. The control group also replicated the finding for two-limb movements to mixed ID tasks. However, the Lissajous group simultaneously produced disparate movement in the mixed target conditions. The results are consistent with recent findings indicating that when provided salient integrated feedback participants can effectively produce disparate movements of the two limbs.


Experimental Brain Research | 2015

Rhythmical bimanual force production: homologous and non-homologous muscles

Deanna M. Kennedy; Jason B. Boyle; Joohyun Rhee; Charles H. Shea

Abstract The experiment was designed to determine participants’ ability to coordinate a bimanual multifrequency pattern of isometric forces using homologous or non-homologous muscles. Lissajous feedback was provided to reduce perceptual and attentional constraints. The primary purpose was to determine whether the activation of homologous and non-homologous muscles resulted in different patterns of distortions in the left limb forces that are related to the forces produced by the right limb. The task was to rhythmically produce a 1:2 pattern of isometric forces by exerting isometric forces on the left side force transducer with the left arm that was coordinated with the pattern of isometric forces produced on the right side force transducer with the right arm. The results indicated that participants were able to ‘tune-in’ a 1:2 coordination patterns using homologous (triceps muscles of the left and right limbs) and using non-homologous muscles (biceps left limb and triceps right limb) when provided Lissajous feedback. However, distinct but consistent and identifiable distortions in the left limb force traces were observed for both the homologous and non-homologous tasks. For the homologous task, the interference occurred in the left limb when the right limb was initiating and releasing force. For the non-homologous task, the interference in the left limb force occurred only when the right limb was releasing force. In both conditions, the interference appeared to continue from the point of force initiation and/or release to peak force velocity. The overall results are consistent with the notion that neural crosstalk manifests differently during the coordination of the limbs depending upon whether homologous or non-homologous muscles are activated.


Psychological Research-psychologische Forschung | 2016

Bimanual force control: cooperation and interference?

Deanna M. Kennedy; Jason B. Boyle; Chaoyi Wang; Charles H. Shea

Three experiments were designed to determine the level of cooperation or interference observed from the forces generated in one limb on the forces exhibited by the contralateral limb when one or both limbs were producing a constant force (Experiment 1), one limb was producing a dynamic force while the other limb was producing a constant force (Experiment 2), and both limbs were producing dynamic force patterns (Experiment 3). The results for both Experiments 1 and 2 showed relatively strong positive time series cross correlations between the left and right limb forces indicating increases or decreases in the forces generated by one limb resulted in corresponding changes in the forces produced by the homologous muscles of the contralateral limb. Experiment 3 required participants to coordinate 1:1 and 1:2 rhythmical bimanual force production tasks when provided Lissajous feedback. The results indicated very effective performance of both bimanual coordination patterns. However, identifiable influences of right limb forces on the left limb force time series were observed in the 1:2 coordination pattern but not in the 1:1 pattern. The results of all three experiments support the notion that neural crosstalk is partially responsible for the stabilities and instabilities associated with bimanual coordination.


Journal of Motor Behavior | 2014

The Sine Wave Protocol: Decrease Movement Time Without Increasing Errors

Jason B. Boyle; Deanna M. Kennedy; Chaoyi Wang; Charles H. Shea

ABSTRACT. Practice tracking a sine wave template has been shown (J. B. Boyle, D. Kennedy, & C. H. Shea, 2012) to greatly enhance performance on a difficult Fitts task of the same amplitude. The purpose of the experiment was to replicate this finding and determine whether enhancements related to the sine wave practice are specific to the amplitude experienced during the sine wave practice. Following sine wave or Fitts task practice with amplitudes of 16° or 24°, participants were tested under the conditions they had practiced under (Test 1) and then all groups were tested under Fitts task conditions (Test 2; ID = 6, amplitude = 16°). Participants who practiced with the sine wave templates were able to move faster on Test 2 where a 16° amplitude Fitts task was used than participants that had practiced either the 16° or 24° amplitude Fitts tasks. The movements produced by the sine groups on Test 2 were not only faster than the movements of the Fitts groups on Test 2, but dwell time was lower with percent time to peak velocity and harmonicity higher for the Sine groups than for the Fitts groups. The decreased movement times for the sine groups on Test 2 were accomplished with hits or endpoint variability similar to that of the Fitts group.


Experimental Brain Research | 2013

Micro‑movements of varying difficulties: wrist and arm movements

Jason B. Boyle; Charles H. Shea

An experiment was designed to determine the degree to which reducing movement amplitude (16°, 8°, to 4°) while keeping the relative accuracy requirements (IDs 1.5, 3, 4.5, and 6) and visual feedback display constant by increasing the display gain proportional to the decrease in amplitude (1×, 2×, 4×) influences reciprocal aiming movements of the wrist and arm. Research on smaller amplitude movements is limited and inconclusive, but these types of movement conditions are becoming increasingly more important as microsurgery and micro-mechanical applications increase. Participants were asked to flex/extend their limb/lever in the horizontal plane at the wrist (arm stabilized) or elbow joint (wrist stabilized) in an attempt to move back and forth between two targets as quickly and accurately as possible. The targets and current position of the limb were projected on the screen in front of the participant. Target width was manipulated with amplitude constant (16°, 8° or 4°). Results indicated that the linear relationship between MT and ID, typically observed for Fitts’ tasks, was observed. There were moderate decreases in MT as amplitude was decreased but only for high ID movements. ID 6 movements at 4° amplitude, for example, were produced more quickly than at amplitude 16° without sacrificing end-point accuracy. The decrease in movement time was, however, related to increased dwell time and very low peak velocities.


Experimental Brain Research | 2017

Do accuracy requirements change bimanual and unimanual control processes similarly

Chaoyi Wang; Jason B. Boyle; Boyi Dai; Charles H. Shea

Unimanual (left and right limbs) and bimanual (in-phase) reciprocal aiming tasks were tested to determine if the control processes used to perform the unimanual aiming tasks were also present in bimanual aiming tasks. Participants were asked to move a cursor as quickly and accurately as possible between the two targets presented in a Lissajous feedback display. The size of the targets created indexes of difficulty (ID) of 3, 4, 5, and 6 and the position of the targets created bimanual and unimanual conditions. The results indicated that, as ID increased, the end-effectors’ motion gradually switched from a cyclical to a more discrete motion for both unimanual and bimanual aiming tasks. However, the transition in control processes (i.e., the transition between cyclical and more discrete motions) tended to occur at a lower ID for the bimanual than the unimanual aiming tasks. Results also indicated that at ID6, bimanual aiming tasks were performed slower, more variable, and right limb dwelled at the targets longer than in the unimanual aiming task. No differences in performance were detected between the unimanual (left and right) and bimanual conditions at IDs 3–5. In terms of bimanual coordination, increasing the accuracy requirement resulted in decreased relative phase bias, but not more stable coupling between the two limbs.


Acta Psychologica | 2011

Wrist and arm movements of varying difficulties.

Jason B. Boyle; Charles H. Shea


Experimental Brain Research | 2013

The role of auditory and visual models in the production of bimanual tapping patterns

Deanna M. Kennedy; Jason B. Boyle; Charles H. Shea


Experimental Brain Research | 2013

A guide to performing difficult bimanual coordination tasks: just follow the yellow brick road

Chaoyi Wang; Deanna M. Kennedy; Jason B. Boyle; Charles H. Shea

Collaboration


Dive into the Jason B. Boyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boyi Dai

University of Wyoming

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge