Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Carling is active.

Publication


Featured researches published by Jason Carling.


Theoretical and Applied Genetics | 2006

Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology

Shiying Yang; Wen Pang; Gavin Ash; John D. I. Harper; Jason Carling; Peter Wenzl; Eric Huttner; Xuxiao Zong; Andrzej Kilian

Understanding the distribution of genetic diversity among individuals, populations and gene pools is crucial for the efficient management of germplasm collections and breeding programs. Diversity analysis is routinely carried out using sequencing of selected gene(s) or molecular marker technologies. Here we report on the development of Diversity Arrays Technology (DArT) for pigeonpea (Cajanus cajan) and its wild relatives. DArT tests thousands of genomic loci for polymorphism and provides the binary scores for hundreds of markers in a single hybridization-based assay. We tested eight complexity reduction methods using various combinations of restriction enzymes and selected PstI/HaeIII genomic representation with the largest frequency of polymorphic clones (19.8%) to produce genotyping arrays. The performance of the PstI/HaeIII array was evaluated by typing 96 accessions representing nearly 20 species of Cajanus. A total of nearly 700 markers were identified with the average call rate of 96.0% and the scoring reproducibility of 99.7%. DArT markers revealed genetic relationships among the accessions consistent with the available information and systematic classification. Most of the diversity was among the wild relatives of pigeonpea or between the wild species and the cultivated C. cajan. Only 64 markers were polymorphic among the cultivated accessions. Such narrow genetic base is likely to represent a serious impediment to breeding progress in pigeonpea. Our study shows that DArT can be effectively applied in molecular systematics and biodiversity studies.


PLOS ONE | 2014

Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus

Harsh Raman; Rosy Raman; Andrzej Kilian; Frank Detering; Jason Carling; Neil Coombes; Simon Diffey; Gururaj Kadkol; David Edwards; Margaret E. McCully; Pradeep Ruperao; Isobel A. P. Parkin; Jacqueline Batley; David J. Luckett; Neil Wratten

Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified.


Molecular Phylogenetics and Evolution | 2011

Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping

Dorothy A. Steane; Dean Nicolle; Carolina Sansaloni; Cesar D. Petroli; Jason Carling; Andrzej Kilian; Alexander Andrew Myburg; Dario Grattapaglia; Re Vaillancourt

A set of over 8000 Diversity Arrays Technology (DArT) markers was tested for its utility in high-resolution population and phylogenetic studies across a range of Eucalyptus taxa. Small-scale population studies of Eucalyptus camaldulensis, Eucalyptus cladocalyx, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus pilularis and Eucalyptus urophylla demonstrated the potential of genome-wide genotyping with DArT markers to differentiate species, to identify interspecific hybrids and to resolve biogeographic disjunctions within species. The population genetic studies resolved geographically partitioned clusters in E. camaldulensis, E. cladocalyx, E. globulus and E. urophylla that were congruent with previous molecular studies. A phylogenetic study of 94 eucalypt species provided results that were largely congruent with traditional taxonomy and ITS-based phylogenies, but provided more resolution within major clades than had been obtained previously. Ascertainment bias (the bias introduced in a phylogeny from using markers developed in a small sample of the taxa that are being studied) was not detected. DArT offers an unprecedented level of resolution for population genetic, phylogenetic and evolutionary studies across the full range of Eucalyptus species.


BMC Proceedings | 2011

Diversity Arrays Technology (DArT) and next- generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus

Carolina Sansaloni; Cesar D. Petroli; Damian Jaccoud; Jason Carling; Frank Detering; Dario Grattapaglia; Andrzej Kilian

Background Wider genome coverage and higher throughput genotyping methods have become increasingly important to meet the resolution and speed necessary for a variety of applications in genomics and molecular breeding of forest trees. Developed more than 10 years ago [1], the Diversity Arrays Technology (DArT) has experienced an increasing interest worldwide for it has efficiently satisfied the requirements of throughput, genome coverage and inter-specific transferability for over 40 different plant species to date, including Eucalyptus[2] and recently Pinus (Dione Alves-Freitas, this meeting). DArT is based on genome complexity reduction using restriction enzymes, followed by hybridization to microarrays to simultaneously assay hundreds to thousands of markers across a genome. Genome complexity reduction for genotyping has now been taken to another level when combined to next generation sequencing (NGS) technologies. Such a strategy has been used for rapid SNP discovery in different organisms [3], and proposed as a way to genotype with RAD (Restriction-associated DNA) sequencing [4]and recently by a similar method generally termed GbS (Genotyping-by-Sequencing)[5]. In this work we assessed the power of the now well established DArT marker platform in combination with Illumina short read sequencing to generate a linkage map for a segregating outcrossed F1 population derived from E. grandis BRASUZ1, the donor of the Eucalyptus reference genome.


Plant Methods | 2010

A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus

Carolina Sansaloni; Cesar D. Petroli; Jason Carling; Corey J. Hudson; Dorothy A. Steane; Alexander Andrew Myburg; Dario Grattapaglia; Re Vaillancourt; Andrzej Kilian

BackgroundA number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus.FindingsAfter testing several genome complexity reduction methods we identified the Pst I/Taq I method as the most effective for Eucalyptus and developed 18 genomic libraries from Pst I/Taq I representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56%) were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees.ConclusionsThis operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees and thus provide high genome coverage. This array will also provide a high-throughput platform for population genetics and phylogenetics in Eucalyptus. The transferability of DArT across species and pedigrees is particularly valuable for a large genus such as Eucalyptus and will facilitate the transfer of information between different studies. Furthermore, the DArT marker array will provide a high-resolution link between phenotypes in populations and the Eucalyptus reference genome, which will soon be completed.


PLOS ONE | 2012

Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome

Cesar D. Petroli; Carolina Sansaloni; Jason Carling; Dorothy A. Steane; Re Vaillancourt; Alexander Andrew Myburg; Orzenil Bonfim da Silva; Georgios Pappas; Andrzej Kilian; Dario Grattapaglia

Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization.


Molecular Breeding | 2012

Diversity arrays technology (DArT) markers in apple for genetic linkage maps

Henk J. Schouten; W. Eric van de Weg; Jason Carling; Sabaz Ali Khan; Steven J. McKay; Martijn van Kaauwen; Alexander H. J. Wittenberg; Herma J. J. Koehorst-van Putten; Yolanda Noordijk; Zhongshan Gao; D. Jasper G. Rees; Maria M. Van Dyk; Damian Jaccoud; Michael J. Considine; Andrzej Kilian

Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52–54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55–76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage.


Theoretical and Applied Genetics | 2011

High-throughput genotyping of hop ( Humulus lupulus L.) utilising diversity arrays technology (DArT)

E. L. Howard; Simon P. Whittock; Jernej Jakse; Jason Carling; P. D. Matthews; G. Probasco; J. A. Henning; P. Darby; Andreja Cerenak; Branka Javornik; Andrzej Kilian; Anthony Koutoulis

Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.


BMC Genomics | 2013

Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry

Erin L. McAdam; Jules S. Freeman; Simon P. Whittock; Emily J. Buck; Jernej Jakse; Andreja Cerenak; Branka Javornik; Andrzej Kilian; Caihong Wang; Dave Andersen; Re Vaillancourt; Jason Carling; Ron Beatson; Lawrence T. Graham; Donna Graham; Peter Darby; Anthony Koutoulis

BackgroundHop (Humulus lupulus L.) is cultivated for its cones, the secondary metabolites of which contribute bitterness, flavour and aroma to beer. Molecular breeding methods, such as marker assisted selection (MAS), have great potential for improving the efficiency of hop breeding. The success of MAS is reliant on the identification of reliable marker-trait associations. This study used quantitative trait loci (QTL) analysis to identify marker-trait associations for hop, focusing on traits related to expediting plant sex identification, increasing yield capacity and improving bittering, flavour and aroma chemistry.ResultsQTL analysis was performed on two new linkage maps incorporating transferable Diversity Arrays Technology (DArT) markers. Sixty-three QTL were identified, influencing 36 of the 50 traits examined. A putative sex-linked marker was validated in a different pedigree, confirming the potential of this marker as a screening tool in hop breeding programs. An ontogenetically stable QTL was identified for the yield trait dry cone weight; and a QTL was identified for essential oil content, which verified the genetic basis for variation in secondary metabolite accumulation in hop cones. A total of 60 QTL were identified for 33 secondary metabolite traits. Of these, 51 were pleiotropic/linked, affecting a substantial number of secondary metabolites; nine were specific to individual secondary metabolites.ConclusionsPleiotropy and linkage, found for the first time to influence multiple hop secondary metabolites, have important implications for molecular selection methods. The selection of particular secondary metabolite profiles using pleiotropic/linked QTL will be challenging because of the difficulty of selecting for specific traits without adversely changing others. QTL specific to individual secondary metabolites, however, offer unequalled value to selection programs. In addition to their potential for selection, the QTL identified in this study advance our understanding of the genetic control of traits of current economic and breeding significance in hop and demonstrate the complex genetic architecture underlying variation in these traits. The linkage information obtained in this study, based on transferable markers, can be used to facilitate the validation of QTL, crucial to the success of MAS.


Crop & Pasture Science | 2016

Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population

Rosy Raman; Simon Diffey; Jason Carling; Ray B. Cowley; Andrzej Kilian; David J. Luckett; Harsh Raman

Abstract. High yield is a major objective in canola-breeding programs. We analysed the genetic determinants controlling variation in grain yield in a doubled-haploid (DH) breeding population derived from a single BC1F1 plant from the cross Skipton/Ag-Spectrum//Skipton (designated as the SAgS population). DH lines were evaluated for flowering time and yield in two replicated trials and exhibited significant genetic variation for both traits. Yield showed negative correlation with flowering time; lines that flowered earlier had higher yield than late-flowering lines. A genetic linkage map comprising 7716 DArTseq markers was constructed for the SAgS population, and a ‘bin’ map based on 508 discrete single-position (non-co-segregating) marker loci was used for quantitative trait locus (QTL) analysis. We identified 20 QTLs (LOD ≥2) associated with variation in flowering time and grain yield. Two QTLs (Qy.wwai-A7/Qdtf.wwai-A7/Qfs.wwai-A7 and Qy.wwai-C3a/Qfs.wwai-C3a) appeared repeatedly across experiments, accounting for 4.9–19% of the genotypic variation in flowering time and yield and were located on chromosomes A07 and C03. We identified 22 putative candidate genes for flowering time as well as grain yield, and all were located in a range of 935 bp to 2.97 Mb from markers underlying QTLs. This research provides useful information to be used for breeding high-yielding canola varieties by combining favourable alleles for early flowering and higher grain yield at loci on chromosomes A07, C03 and possibly on A06.

Collaboration


Dive into the Jason Carling's collaboration.

Top Co-Authors

Avatar

Peter Wenzl

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Eric Huttner

Australian Centre for International Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Damian Jaccoud

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Sansaloni

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Cesar D. Petroli

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Dario Grattapaglia

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge