Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason T. Shearn is active.

Publication


Featured researches published by Jason T. Shearn.


American Journal of Sports Medicine | 2000

Two-Bundle Posterior Cruciate Ligament Reconstruction An In Vitro Analysis of Graft Placement and Tension

Dana A. Mannor; Jason T. Shearn; Edward S. Grood; Frank R. Noyes; Martin S. Levy

This study had two purposes: first, to determine how femoral attachment location affects the load sharing between the two bundles of a Y-type posterior cruciate ligament reconstruction, and second, to determine how the bundles, separately and in combination, control posterior tibial translation throughout the full range of knee flexion. One and two-bundle reconstructions were performed in 12 cadaveric knees. The one-bundle reconstructions were attached within the femoral posterior cruciate ligament footprint at one of three locations, high and shallow (S 1), mid and shallow (S2), or mid and deep (D). The two-bundle reconstructions comprised an S1 bundle with either an S2 or a D bundle. Posterior translation and bundle tension were measured as the knee was flexed from full extension to 120° of flexion while a posterior force of either 50 or 100 N was applied to the proximal tibia. The shallow one-bundle reconstruction restored posterior translation to within 2 mm of that of the intact knee over the entire range of knee flexion. The deep reconstruction did not control abnormal posterior translation above 45°. The tension in the shallow bundles increased with knee flexion, and the deep bundle tension remained nearly constant throughout knee flexion. Both two-bundle reconstructions controlled posterior translation, but with different load-sharing characteristics. The S1-S2 configuration resisted posterior tibial translation as both bundles became taut in flexion. In contrast, the S1-D configuration resisted posterior translation in a reciprocal fashion with the D bundle tension being the greatest in extension and the S1 bundle tension being the greatest tension in flexion.


Journal of Biomechanical Engineering-transactions of The Asme | 2007

Mechanical Stimulation of Tendon Tissue Engineered Constructs: Effects on Construct Stiffness, Repair Biomechanics, and Their Correlation

Jason T. Shearn; Natalia Juncosa-Melvin; Gregory P. Boivin; Marc T. Galloway; Wendy Goodwin; Cynthia Gooch; Michael G. Dunn; David L. Butler

The objective of this study was to determine how in vitro mechanical stimulation of tissue engineered constructs affects their stiffness and modulus in culture and tendon repair biomechanics 12 weeks after surgical implantation. Using six female adult New Zealand White rabbits, autogenous tissue engineered constructs were created by seeding mesenchymal stem cells (0.1 x 10(6) cells/ml) in collagen gel (2.6 mg/ml) and combining both with a collagen sponge. Employing a novel experimental design strategy, four constructs from each animal were mechanically stimulated (one 1 Hz cycle every 5 min to 2.4% peak strain for 8 h/day for 2 weeks) while the other four remained unstretched during the 2 week culture period. At the end of incubation, three of the mechanically stimulated (S) and three of the nonstimulated (NS) constructs from each animal were assigned for in vitro mechanical testing while the other two autogenous constructs were implanted into bilateral full-thickness, full-length defects created in the central third of rabbit patellar tendons (PTs). No significant differences were found in the in vitro linear stiffnesses between the S (0.15+/-0.1 N/mm) and NS constructs (0.08+/-0.02 N/mm; mean+/-SD). However, in vitro mechanical stimulation significantly increased the structural and material properties of the repair tissue, including a 14% increase in maximum force (p=0.01), a 50% increase in linear stiffness (p=0.001), and 23-41% increases in maximum stress and modulus (p=0.01). The S repairs achieved 65%, 80%, 60%, and 40% of normal central PT maximum force, linear stiffness, maximum stress, and linear modulus, respectively. The results for the S constructs exceed values obtained previously by our group using the same animal and defect model, and to our knowledge, this is the first study to show the benefits of in vitro mechanical stimulation on tendon repair biomechanics. In addition, the linear stiffnesses for the construct and repair were positively correlated (r=0.56) as were their linear moduli (r=0.68). Such in vitro predictors of in vivo outcome hold the potential to speed the development of tissue engineered products by reducing the time and costs of in vivo studies.


Journal of Bone and Joint Surgery, American Volume | 2013

The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair

Marc T. Galloway; Andrea L. Lalley; Jason T. Shearn

Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment. Current tendon repair rehabilitation protocols focus on implementing early, well-controlled eccentric loading exercises to improve repair outcome. Tissue engineers look toward incorporating mechanical loading regimens to precondition cell populations for the creation of improved biological augmentations for tendon repair.


Journal of Biomechanics | 2008

Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct

Victor S. Nirmalanandhan; Marepalli B. Rao; Jason T. Shearn; Natalia Juncosa-Melvin; Cindi Gooch; David L. Butler

Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack the initial stiffness at the time of surgery to resist the expected peak in vivo forces thereafter. Since the stiffness of these constructs has also been shown to positively correlate with the stiffness of the subsequent repairs, improving initial stiffness by appropriate selection of in vitro culture conditions would seem crucial. In this study we examined the individual and combined effects of collagen scaffold type, construct length, and mechanical stimulation on in vitro implant stiffness. Two levels each of scaffold material (collagen gel vs. collagen sponge), construct length (short vs. long), and mechanical stimulation (stimulated vs. non-stimulated) were examined. Our results indicate that all three treatment factors influenced construct linear stiffness. Increasing the length of the construct had the greatest effect on the stiffness compared to introducing mechanical stimulation or changing the scaffold material. A significant interaction was also found between length and stimulation. Of the eight groups studied, longer, stimulated, cell-sponge constructs showed the highest in vitro linear stiffness. We now plan in vivo studies to determine if higher stiffness constructs generate higher stiffness repairs 12 weeks after surgery and if in vitro construct stiffness continues to correlate with in vivo repair parameters like linear stiffness.


Tissue Engineering Part A | 2009

Using Functional Tissue Engineering and Bioreactors to Mechanically Stimulate Tissue-Engineered Constructs

David L. Butler; Shawn A. Hunter; Kumar Chokalingam; Michael J. Cordray; Jason T. Shearn; Natalia Juncosa-Melvin; Sanjit Nirmalanandhan; Abhishek Jain

Bioreactors precondition tissue-engineered constructs (TECs) to improve integrity and hopefully repair. In this paper, we use functional tissue engineering to suggest criteria for preconditioning TECs. Bioreactors should (1) control environment during mechanical stimulation; (2) stimulate multiple constructs with identical or individual waveforms; (3) deliver precise displacements, including those that mimic in vivo activities of daily living (ADLs); and (4) adjust displacement patterns based on reaction loads and biological activity. We apply these criteria to three bioreactors. We have placed a pneumatic stimulator in a conventional incubator and stretched four constructs in each of five silicone dishes. We have also programmed displacement-limited stimuli that replicate frequencies and peak in vivo patellar tendon (PT) strains. Cellular activity can be monitored from spent media. However, our design prevents direct TEC force measurement. We have improved TEC stiffness as well as PT repair stiffness and shown correlations between the two. We have also designed an incubator to fit within each of two electromagnetic stimulators. Each incubator provides cell viability like a commercial incubator. Multiple constructs are stimulated with precise displacements that can mimic ADL strain patterns and record individual forces. Future bioreactors could be further improved by controlling and measuring TEC displacements and forces to create more functional tissues for surgeons and their patients.


Tissue Engineering Part A | 2009

Combined Effects of Scaffold Stiffening and Mechanical Preconditioning Cycles on Construct Biomechanics, Gene Expression, and Tendon Repair Biomechanics

Victor S. Nirmalanandhan; Natalia Juncosa-Melvin; Jason T. Shearn; Gregory P. Boivin; Marc T. Galloway; Cynthia Gooch; Gino Bradica; David L. Butler

Our group has previously reported that in vitro mechanical stimulation of tissue-engineered tendon constructs significantly increases both construct stiffness and the biomechanical properties of the repair tissue after surgery. When optimized using response surface methodology, our results indicate that a mechanical stimulus with three components (2.4% strain, 3000 cycles/day, and one cycle repetition) produced the highest in vitro linear stiffness. Such positive correlations between construct and repair stiffness after surgery suggest that enhancing structural stiffness before surgery could not only accelerate repair stiffness but also prevent premature failures in culture due to poor mechanical integrity. In this study, we examined the combined effects of scaffold crosslinking and subsequent mechanical stimulation on construct mechanics and biology. Autologous tissue-engineered constructs were created by seeding mesenchymal stem cells (MSCs) from 15 New Zealand white rabbits on type I collagen sponges that had undergone additional dehydrothermal crosslinking (termed ADHT in this manuscript). Both constructs from each rabbit were mechanically stimulated for 8h/day for 12 consecutive days with half receiving 100 cycles/day and the other half receiving 3000 cycles/day. These paired MSC-collagen autologous constructs were then implanted in bilateral full-thickness, full-length defects in the central third of rabbit patellar tendons. Increasing the number of in vitro cycles/day delivered to the ADHT constructs in culture produced no differences in stiffness or gene expression and no changes in biomechanical properties or histology 12 weeks after surgery. Compared to MSC-based repairs from a previous study that received no additional treatment in culture, ADHT crosslinking of the scaffolds actually lowered the 12-week repair stiffness. Thus, while ADHT crosslinking may initially stiffen a construct in culture, this specific treatment also appears to mask any benefits of stimulation among repairs postsurgery. Our findings emphasize the importance of properly preconditioning a scaffold to better control/modulate MSC differentiation in vitro and to further enhance repair outcome in vivo.


Journal of Biomechanical Engineering-transactions of The Asme | 2007

Mechanical Stimulation of Tissue Engineered Tendon Constructs: Effect of Scaffold Materials

Victor S. Nirmalanandhan; Matthew R. Dressler; Jason T. Shearn; Natalia Juncosa-Melvin; Marepalli B. Rao; Cynthia Gooch; Gino Bradica; David L. Butler

Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)-collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5 min to a peak strain of 2.4%, for 8 h/day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048+/-0.009 versus 0.015+/-0.004; mean+/-SEM (standard error of the mean ) N/mm) and linear modulus (0.016+/-0.004 versus 0.005+/-0.001; mean+/-SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.


PLOS ONE | 2013

The Paratenon Contributes to Scleraxis-Expressing Cells during Patellar Tendon Healing

Nathaniel A. Dyment; Chia-Feng Liu; Namdar Kazemi; Lindsey Aschbacher-Smith; Keith Kenter; Andrew P. Breidenbach; Jason T. Shearn; Christopher Wylie; David W. Rowe; David L. Butler

The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.


Journal of Orthopaedic Research | 2011

Investigating the effects of anterior tibial translation on anterior knee force in the porcine model: Is the porcine knee ACL dependent?

Daniel V. Boguszewski; Jason T. Shearn; Christopher T. Wagner; David L. Butler

This study sought to determine anterior force in the porcine knee during simulated 6‐degree‐of‐freedom (DOF) motion to establish the role of the anterior cruciate ligament (ACL). Using a 6‐DOF robot, a simulated ovine motion was applied to porcine hind limbs while recording the corresponding forces. Since the porcine knee is more lax than the ovine knee, anterior tibial translations were superimposed on the simulated motion in 2 mm increments from 0 mm to 10 mm to find a condition that would load the ACL. Increments through 8 mm increased anterior knee force, while the 10 mm increment decreased the force. Beyond 4 mm, anterior force increases were non‐linear and less than the increases at 2 and 4 mm, which may indicate early structural damage. At 4 mm, the average anterior force was 76.9 ± 10.6 N (mean ± SEM; p < 0.025). The ACL was the primary restraint, accounting for 80–125% of anterior force throughout the range of motion. These results demonstrate the ACL dependence of the porcine knee for the simulated motion, suggesting this model as a candidate for studying ACL function. With reproducible testing conditions that challenge the ACL, this model could be used in developing and screening possible reconstruction strategies.


Journal of Orthopaedic Research | 2010

Chondroitin-6-Sulfate Incorporation and Mechanical Stimulation Increase MSC-Collagen Sponge Construct Stiffness

Kirsten R. C. Kinneberg; Victor S. Nirmalanandhan; Natalia Juncosa-Melvin; Heather M. Powell; Steven T. Boyce; Jason T. Shearn; David L. Butler

Using functional tissue engineering principles, our laboratory has produced tendon repair tissue which matches the normal patellar tendon force‐displacement curve up to 32% of failure. This repair tissue will need to withstand more strenuous activities, which can reach or even exceed 40% of failure force. To improve the linear stiffness of our tissue engineered constructs (TECs) and tissue engineered repairs, our lab is incorporating the glycosaminoglycan chondroitin‐6‐sulfate (C6S) into a type I collagen scaffold. In this study, we examined the effect of C6S incorporation and mechanical stimulation cycle number on linear stiffness and mRNA expression (collagen types I and III, decorin and fibronectin) for mesenchymal stem cell (MSC)‐collagen sponge TECs. The TECs were fabricated by inoculating MSCs at a density of 0.14 × 106 cells/construct onto pre‐cut scaffolds. Primarily type I collagen scaffold materials, with or without C6S, were cultured using mechanical stimulation with three different cycle numbers (0, 100, or 3,000 cycles/day). After 2 weeks in culture, TECs were evaluated for linear stiffness and mRNA expression. C6S incorporation and cycle number each played an important role in gene expression, but only the interaction of C6S incorporation and cycle number produced a benefit for TEC linear stiffness.

Collaboration


Dive into the Jason T. Shearn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Gooch

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge