Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca J. Nesbitt is active.

Publication


Featured researches published by Rebecca J. Nesbitt.


Annals of Biomedical Engineering | 2015

A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics

Nathaniel A. Bates; Rebecca J. Nesbitt; Jason T. Shearn; Gregory D. Myer; Timothy E. Hewett

Six degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks. Input of raw, in vivo, skin-marker-derived motion capture kinematics consistently resulted in specimen failure. The protocol described in this study developed an in-depth methodology to adapt in vivo kinematic recordings into 6-DOF knee motion simulations for drop vertical jumps and sidestep cutting. Our simulation method repeatably produced kinetics consistent with vertical ground reaction patterns while preserving specimen integrity. Athletic task simulation represents an advancement that allows investigators to examine ACL-intact and graft biomechanics during motions that generate greater kinetics, and the athletic tasks are more representative of documented cases of ligament rupture. Establishment of baseline functional mechanics within the knee joint during athletic tasks will serve to advance the prevention, repair and rehabilitation of ACL injuries.


Journal of Biomechanical Engineering-transactions of The Asme | 2012

Effect of Perturbing a Simulated Motion on Knee and Anterior Cruciate Ligament Kinetics

Safa T. Herfat; Daniel V. Boguszewski; Rebecca J. Nesbitt; Jason T. Shearn

Current surgical treatments for common knee injuries do not restore the normal biomechanics. Among other factors, the abnormal biomechanics increases the susceptibility to the early onset of osteoarthritis. In pursuit of improving long term outcome, investigators must understand normal knee kinematics and corresponding joint and anterior cruciate ligament (ACL) kinetics during the activities of daily living. Our long term research goal is to measure in vivo joint motions for the ovine stifle model and later simulate these motions with a 6 degree of freedom (DOF) robot to measure the corresponding 3D kinetics of the knee and ACL-only joint. Unfortunately, the motion measurement and motion simulation technologies used for our project have associated errors. The objective of this study was to determine how motion measurement and motion recreation error affect knee and ACL-only joint kinetics by perturbing a simulated in vivo motion in each DOF and measuring the corresponding intact knee and ACL-only joint forces and moments. The normal starting position for the motion was perturbed in each degree of freedom by four levels (-0.50, -0.25, 0.25, and 0.50 mm or degrees). Only translational perturbations significantly affected the intact knee and ACL-only joint kinetics. The compression-distraction perturbation had the largest effect on intact knee forces and the anterior-posterior perturbation had the largest effect on the ACL forces. Small translational perturbations can significantly alter intact knee and ACL-only joint forces. Thus, translational motion measurement errors must be reduced to provide a more accurate representation of the intact knee and ACL kinetics. To account for the remaining motion measurement and recreation errors, an envelope of forces and moments should be reported. These force and moment ranges will provide valuable functional tissue engineering parameters (FTEPs) that can be used to design more effective ACL treatments.


Clinical Orthopaedics and Related Research | 2017

Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal Tibial Rotation In Vitro

Nathaniel A. Bates; Rebecca J. Nesbitt; Jason T. Shearn; Gregory D. Myer; Timothy E. Hewett

BackgroundAnterior cruciate ligament (ACL) injures incur over USD 2 billion in annual medical costs and prevention has become a topic of interest in biomechanics. However, literature conflicts persist over how knee rotations contribute to ACL strain and ligament injury. To maximize the efficacy of ACL injury prevention, the effects of underlying mechanics need to be better understood.Questions/purposesWe applied robotically controlled, in vivo-derived kinematic stimuli to the knee to assess ligament biomechanics in a cadaver model. We asked: (1) Does the application of abduction rotation increase ACL and medial collateral ligament (MCL) strain relative to the normal condition? (2) Does the application of internal tibial rotation impact ACL strain relative to the neutral condition? (3) Does combined abduction and internal tibial rotation increase ligament strain more than either individual contribution?MethodsA six-degree-of-freedom robotic manipulator was used to position 17 cadaveric specimens free from knee pathology outside of low-grade osteoarthritis (age, 47 ± 8 years; 13 males, four females) into orientations that mimic initial contact recorded from in vivo male and female drop vertical jump and sidestep cutting activities. Four-degree rotational perturbations were applied in both directions from the neutral alignment position (creating an 8° range) for each frontal, transverse, and combined planes while ACL and MCL strains were continuously recorded with DVRT strain gauges implanted directly on each ligament. Analysis of variance models with least significant difference post hoc analysis were used to assess differences in ligament strain and joint loading between sex, ligament condition, or motion task and rotation type.ResultsFor the female drop vertical jump simulation in the intact knee, isolated abduction and combined abduction/internal rotational stimuli produced the greatest change in strain from the neutral position as compared with all other stimuli within the ACL (1.5% ± 1.0%, p ≤ 0.035; 1.8% ± 1.3%, p ≤ 0.005) and MCL (1.8% ± 1.0%, p < 0.001; 1.6% ± 1.3%, p < 0.001) compared with all other applied stimuli. There were no differences in mean peak ACL strain between any rotational stimuli (largest mean difference = 2.0%; 95% confidence interval [CI], −0.9% to 5.0%; p = 0.070). These trends were consistent for all four simulated tasks. Peak ACL strain in the intact knee was larger than peak MCL strain for all applied rotational stimuli in the drop vertical jump simulations (smallest mean difference = 2.1%; 95% CI, −0.4% to 4.5%; p = 0.047).ConclusionsKinematically constrained cadaveric knee models using peak strain as an outcome variable require greater than 4° rotational perturbations to elicit changes in intraarticular ligaments.Clinical RelevanceBecause combined rotations and isolated abduction produced greater change in strain relative to the neutral position for the ACL and MCL than any other rotational stimuli in this cadaver study, hypotheses for in vivo investigations aimed toward injury prevention that focuses on the reduction of frontal plane knee motion should be considered. Furthermore, reduced strain in the MCL versus the ACL may help explain why only 30% of ACL ruptures exhibit concomitant MCL injuries.


Journal of Biomechanics | 2016

Sex-based differences in knee ligament biomechanics during robotically simulated athletic tasks

Nathaniel A. Bates; Rebecca J. Nesbitt; Jason T. Shearn; Gregory D. Myer; Timothy E. Hewett

ACL injury rates are greater in female athletes than their male counterparts. As female athletes are at increased risk, it is important to understand the underlying mechanics that contribute to this sex bias. The purpose of this investigation was to employ a robotic manipulator to simulate male and female kinematics from athletic tasks on cadaveric specimens and identify sex-based mechanical differences relative to the ACL loading. It was hypothesized that simulations of female motion would generate the higher loads and ligament strains associated with in vivo ACL injury risk than simulations of male motion. A 6-degree-of-freedom robotic manipulator articulated cadaveric lower extremity specimens from 12 donors through simulations of in vivo kinematics recorded from male and female athletic tasks. Simulation of female kinematics exhibited lower peak lateral joint force during the drop vertical jump and lower peak anterior and lateral joint force and external joint torque during the sidestep cut (P<0.05). Peak ACL strain during a drop vertical jump was 6.27% and 6.61% for the female and male kinematic simulations, respectively (P=0.86). Peak ACL strain during a sidestep cut was 4.33% and 7.57% for female and male kinematic simulations respectively (P=0.21). For the tasks simulated, the sex-based loading and strain differences identified were unlikely to have a significant bearing on the increased rate of ACL injures observed in female athletes. Additional perturbation may be necessary to invoke the mechanisms that lead to higher rates of ACL injury in female populations.


Journal of Biomechanics | 2017

Robotic simulation of identical athletic-task kinematics on cadaveric limbs exhibits a lack of differences in knee mechanics between contralateral pairs.

Nathaniel A. Bates; April L. McPherson; Rebecca J. Nesbitt; Jason T. Shearn; Gregory D. Myer; Timothy E. Hewett

Limb asymmetry is a known factor for increased ACL injury risk. These asymmetries are normally observed during in vivo testing. Prior studies have developed in vitro testing methodologies driven by in vivo kinematics to investigate knee mechanics relative to ACL injury. The objective of this study was to determine if mechanical side-to-side asymmetries persist in contralateral pairs during in vitro simulation testing. In vivo kinematics were recorded for male and female drop vertical jump and sidestep cutting tasks. The recorded kinematics were used to robotically simulate the motions on 7 contralateral pairs of cadaveric lower extremities specimens. ACL and MCL force, torque, and strains were recorded and analyzed for differences between contralateral pairs. There was a general lack of mechanical differences between limb sides. Adduction peak torque for the male sidestep cut movement was significantly different between limb sides (p=0.04). However, this is consistent with ACL injury mechanics in that movement in the frontal plane (abduction/adduction) increases injury risk and it is possible loading differences in this plane may have resulted from tolerances within the setup process. The findings of this study indicate that contralateral knee joints were representative of each other during biomechanical in vitro tests. In future cadaveric robotic simulations, contralateral limbs can be used interchangeably. In addition, direct comparisons of the structural behaviors of isolated conditions for contralateral knee joints can be performed.


American Journal of Sports Medicine | 2016

Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks

Nathaniel A. Bates; Rebecca J. Nesbitt; Jason T. Shearn; Gregory D. Myer; Timothy E. Hewett

Background: Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. Purpose: To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Study Design: Descriptive laboratory study. Methods: A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, −7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. Results: The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = −0.42 to −0.61) and internal rotation torques (r = −0.39 to −0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = −0.34 to −0.67) and medial knee force (r = −0.58 to −0.59). These moderate correlations were also present during simulated sidestep cutting. Conclusion: The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. Clinical Relevance: The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury.


Clinical Biomechanics | 2018

The influence of internal and external tibial rotation offsets on knee joint and ligament biomechanics during simulated athletic tasks

Nathaniel A. Bates; Rebecca J. Nesbitt; Jason T. Shearn; Gregory D. Myer; Timothy E. Hewett

Background: Following anterior cruciate ligament injury and subsequent reconstruction transverse plane tibiofemoral rotation becomes underconstrained and overconstrained, respectively. Conflicting reports exist on how rotations influence loading at the knee. This investigation aimed to determine the mechanical effects of internal and external tibial rotation offsets on knee kinematics and ligament strains during in vitro simulations of in vivo recorded kinematics. Method: A 6‐degree‐of‐freedom robotic manipulator arm was used to articulate 11 cadaveric tibiofemoral joint specimens through simulations of four athletic tasks produced from in vivo recorded kinematics. These simulations were then repeated with 4° tibial rotation offsets applied to the baseline joint orientation. Findings: Rotational offsets had a significant effect on peak posterior force for female motion simulations (P < 0.01), peak lateral force for most simulated tasks (P < 0.01), and peak anterior force, internal torque, and flexion torque for sidestep cutting tasks (P ≤ 0.01). Rotational offsets did not exhibit statistically significant effects on peak anterior cruciate ligament strain (P > 0.05) or medial collateral ligament strain (P > 0.05) for any task. Interpretation: Transverse plane rotational offsets comparable to those observed in anterior cruciate ligament deficient and reconstructed patients alter knee kinetics without significantly altering anterior cruciate ligament strain. As knee degeneration is attributed to abnormal knee loading profiles, altered transverse plane kinematics may contribute to this. However, altered transverse plane rotations likely play a limited role in anterior cruciate ligament injury risk as physiologic offsets failed to significantly influence anterior cruciate ligament strain during athletic tasks.


Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions | 2013

Correlating knee characteristics and dynamic load to customize gait simulation in vitro

Rebecca J. Nesbitt; Nathaniel A. Bates; Grant Schaffner; Timothy E. Hewett; Jason T. Shearn

Anterior cruciate ligament (ACL) tears are one of the most common knee injuries, with estimates reaching approximately 250,000 cases in the US per year [1]. In addition, patients treated with surgical reconstruction, or conservatively through rehabilitation and activity modification, have still been shown to be at increased risk of developing osteoarthritis (OA) earlier in life [2]. Researchers suspect that the failure of current ACL repair techniques is their inability to restore native functionality to the knee after injury.© 2013 ASME


Journal of Biomechanics | 2014

Primary and secondary restraints of human and ovine knees for simulated in vivo gait kinematics

Rebecca J. Nesbitt; Safa T. Herfat; Daniel V. Boguszewski; Andrew J. Engel; Marc T. Galloway; Jason T. Shearn


Annals of Biomedical Engineering | 2018

Effects of Population Variability on Knee Loading During Simulated Human Gait

Rebecca J. Nesbitt; Nathaniel A. Bates; Marepalli B. Rao; Grant Schaffner; Jason T. Shearn

Collaboration


Dive into the Rebecca J. Nesbitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory D. Myer

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Safa T. Herfat

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

April L. McPherson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge