Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaswinder Khattra is active.

Publication


Featured researches published by Jaswinder Khattra.


Nature | 2012

The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

Sohrab P. Shah; Andrew Roth; Rodrigo Goya; Arusha Oloumi; Gavin Ha; Yongjun Zhao; Gulisa Turashvili; Jiarui Ding; Kane Tse; Gholamreza Haffari; Ali Bashashati; Leah M Prentice; Jaswinder Khattra; Angela Burleigh; Damian Yap; Virginie Bernard; Andrew McPherson; Karey Shumansky; Anamaria Crisan; Ryan Giuliany; Alireza Heravi-Moussavi; Jamie Rosner; Daniel Lai; Inanc Birol; Richard Varhol; Angela Tam; Noreen Dhalla; Thomas Zeng; Kevin Ma; Simon K. Chan

Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time—to our knowledge—in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.


Nature | 2009

Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution.

Sohrab P. Shah; Ryan D. Morin; Jaswinder Khattra; Leah M Prentice; Trevor Pugh; Angela Burleigh; Allen Delaney; Karen A. Gelmon; Ryan Guliany; Janine Senz; Christian Steidl; Robert A. Holt; Steven J.M. Jones; Mark Sun; Gillian Leung; Richard A. Moore; Tesa Severson; Greg Taylor; Andrew E. Teschendorff; Kane Tse; Gulisa Turashvili; Richard Varhol; René L. Warren; Peter H. Watson; Yongjun Zhao; Carlos Caldas; David Huntsman; Martin Hirst; Marco A. Marra; Samuel Aparicio

Recent advances in next generation sequencing have made it possible to precisely characterize all somatic coding mutations that occur during the development and progression of individual cancers. Here we used these approaches to sequence the genomes (>43-fold coverage) and transcriptomes of an oestrogen-receptor-α-positive metastatic lobular breast cancer at depth. We found 32 somatic non-synonymous coding mutations present in the metastasis, and measured the frequency of these somatic mutations in DNA from the primary tumour of the same patient, which arose 9 years earlier. Five of the 32 mutations (in ABCB11, HAUS3, SLC24A4, SNX4 and PALB2) were prevalent in the DNA of the primary tumour removed at diagnosis 9 years earlier, six (in KIF1C, USP28, MYH8, MORC1, KIAA1468 and RNASEH2A) were present at lower frequencies (1–13%), 19 were not detected in the primary tumour, and two were undetermined. The combined analysis of genome and transcriptome data revealed two new RNA-editing events that recode the amino acid sequence of SRP9 and COG3. Taken together, our data show that single nucleotide mutational heterogeneity can be a property of low or intermediate grade primary breast cancers and that significant evolution can occur with disease progression.


Journal of Eukaryotic Microbiology | 2001

Recent advances in our knowledge of the Myxozoa

Michael L. Kent; Karl B. Andree; Jerri L. Bartholomew; Mansour El-Matbouli; Sherwin S. Desser; Robert H. Devlin; Stephen W. Feist; Ronald P. Hedrick; Rudolf W. Hoffmann; Jaswinder Khattra; Sascha L. Hallett; R. J. G. Lester; Matthew Longshaw; Oswaldo Palenzeula; Mark E. Siddall; Chongxie Xiao

Abstract In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in turn this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the oligochaete, Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan, Tetracapsula bryosalmonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that:1) the Myxozoa are closely related to Cnidaria (also supported by morphological data); 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan, rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist); and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis, Ceratomyxa shasta, Kudoa spp., and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans, which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.


The New England Journal of Medicine | 2009

Mutation of FOXL2 in granulosa-cell tumors of the ovary

Sohrab P. Shah; Martin Köbel; Janine Senz; Ryan D. Morin; Blaise Clarke; Kimberly C. Wiegand; Gillian Leung; Abdalnasser Zayed; Erika Mehl; Steve E. Kalloger; Mark Sun; Ryan Giuliany; Erika Yorida; Steven J.M. Jones; Richard Varhol; Kenneth D. Swenerton; Dianne Miller; Philip B. Clement; Colleen Crane; Jason Madore; Diane Provencher; Peter C. K. Leung; Anna deFazio; Jaswinder Khattra; Gulisa Turashvili; Yongjun Zhao; Thomas Zeng; J.N. Mark Glover; Barbara C. Vanderhyden; Chengquan Zhao

BACKGROUND Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The pathogenesis of these tumors is unknown. Moreover, their histopathological diagnosis can be challenging, and there is no curative treatment beyond surgery. METHODS We analyzed four adult-type GCTs using whole-transcriptome paired-end RNA sequencing. We identified putative GCT-specific mutations that were present in at least three of these samples but were absent from the transcriptomes of 11 epithelial ovarian tumors, published human genomes, and databases of single-nucleotide polymorphisms. We confirmed these variants by direct sequencing of complementary DNA and genomic DNA. We then analyzed additional tumors and matched normal genomic DNA, using a combination of direct sequencing, analyses of restriction-fragment-length polymorphisms, and TaqMan assays. RESULTS All four index GCTs had a missense point mutation, 402C-->G (C134W), in FOXL2, a gene encoding a transcription factor known to be critical for granulosa-cell development. The FOXL2 mutation was present in 86 of 89 additional adult-type GCTs (97%), in 3 of 14 thecomas (21%), and in 1 of 10 juvenile-type GCTs (10%). The mutation was absent in 49 SCSTs of other types and in 329 unrelated ovarian or breast tumors. CONCLUSIONS Whole-transcriptome sequencing of four GCTs identified a single, recurrent somatic mutation (402C-->G) in FOXL2 that was present in almost all morphologically identified adult-type GCTs. Mutant FOXL2 is a potential driver in the pathogenesis of adult-type GCTs.


Nature | 2015

Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution.

Peter Eirew; Adi Steif; Jaswinder Khattra; Gavin Ha; Damian Yap; Hossein Farahani; Karen A. Gelmon; Stephen Chia; Colin Mar; Adrian Wan; Emma Laks; Justina Biele; Karey Shumansky; Jamie Rosner; Andrew McPherson; Cydney Nielsen; Andrew Roth; Calvin Lefebvre; Ali Bashashati; Camila P. E. de Souza; Celia Siu; Radhouane Aniba; Jazmine Brimhall; Arusha Oloumi; Tomo Osako; Alejandra Bruna; Jose L. Sandoval; Teresa Ruiz de Algara; Wendy Greenwood; Kaston Leung

Human cancers, including breast cancers, comprise clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution, underpinning important emergent features such as drug resistance and metastasis. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours. However, the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours have not been systematically examined at single-cell resolution. Here we show, using deep-genome and single-cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single-cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies using patient-derived breast cancer xenoengraftment.


Nature Methods | 2014

PyClone: statistical inference of clonal population structure in cancer

Andrew Roth; Jaswinder Khattra; Damian Yap; Adrian Wan; Emma Laks; Justina Biele; Gavin Ha; Samuel Aparicio; Alexandre Bouchard-Côté; Sohrab P. Shah

We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClones accuracy.


Current Biology | 2005

Functional genomics of the cilium, a sensory organelle

Oliver E. Blacque; Elliot A. Perens; Keith A. Boroevich; Peter N. Inglis; Chunmei Li; Adam Warner; Jaswinder Khattra; Robert A. Holt; Guangshuo Ou; Allan K. Mah; Sheldon J. McKay; Peter Huang; Peter Swoboda; Steve Jones; Marco A. Marra; David L. Baillie; Donald G. Moerman; Shai Shaham; Michel R. Leroux

Cilia and flagella play important roles in many physiological processes, including cell and fluid movement, sensory perception, and development. The biogenesis and maintenance of cilia depend on intraflagellar transport (IFT), a motility process that operates bidirectionally along the ciliary axoneme. Disruption in IFT and cilia function causes several human disorders, including polycystic kidneys, retinal dystrophy, neurosensory impairment, and Bardet-Biedl syndrome (BBS). To uncover new ciliary components, including IFT proteins, we compared C. elegans ciliated neuronal and nonciliated cells through serial analysis of gene expression (SAGE) and screened for genes potentially regulated by the ciliogenic transcription factor, DAF-19. Using these complementary approaches, we identified numerous candidate ciliary genes and confirmed the ciliated-cell-specific expression of 14 novel genes. One of these, C27H5.7a, encodes a ciliary protein that undergoes IFT. As with other IFT proteins, its ciliary localization and transport is disrupted by mutations in IFT and bbs genes. Furthermore, we demonstrate that the ciliary structural defect of C. elegans dyf-13(mn396) mutants is caused by a mutation in C27H5.7a. Together, our findings help define a ciliary transcriptome and suggest that DYF-13, an evolutionarily conserved protein, is a novel core IFT component required for cilia function.


Genome Research | 2014

TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data

Gavin Ha; Andrew Roth; Jaswinder Khattra; Julie Ho; Damian Yap; Leah M Prentice; Nataliya Melnyk; Andrew McPherson; Ali Bashashati; Emma Laks; Justina Biele; Jiarui Ding; Alan Le; Jamie Rosner; Karey Shumansky; Marco A. Marra; C. Blake Gilks; David Huntsman; Jessica N. McAlpine; Samuel Aparicio; Sohrab P. Shah

The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated subclonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer patient sample, thereby recapitulating the key modeling assumptions of TITAN.


Developmental Biology | 2009

ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult

James D. McGhee; Tetsunari Fukushige; Michael W. Krause; Stephanie E. Minnema; Barbara Goszczynski; Jeb Gaudet; Yuji Kohara; Olaf Bossinger; Yongjun Zhao; Jaswinder Khattra; Martin Hirst; Steven J.M. Jones; Marco A. Marra; Peter Ruzanov; Adam Warner; Richard Zapf; Donald G. Moerman; John M. Kalb

Starting with SAGE-libraries prepared from C. elegans FAC-sorted embryonic intestine cells (8E-16E cell stage), from total embryos and from purified oocytes, and taking advantage of the NextDB in situ hybridization data base, we define sets of genes highly expressed from the zygotic genome, and expressed either exclusively or preferentially in the embryonic intestine or in the intestine of newly hatched larvae; we had previously defined a similarly expressed set of genes from the adult intestine. We show that an extended TGATAA-like sequence is essentially the only candidate for a cis-acting regulatory motif common to intestine genes expressed at all stages. This sequence is a strong ELT-2 binding site and matches the sequence of GATA-like sites found to be important for the expression of every intestinal gene so far analyzed experimentally. We show that the majority of these three sets of highly expressed intestinal-specific/intestinal-enriched genes respond strongly to ectopic expression of ELT-2 within the embryo. By flow-sorting elt-2(null) larvae from elt-2(+) larvae and then preparing Solexa/Illumina-SAGE libraries, we show that the majority of these genes also respond strongly to loss-of-function of ELT-2. To test the consequences of loss of other transcription factors identified in the embryonic intestine, we develop a strain of worms that is RNAi-sensitive only in the intestine; however, we are unable (with one possible exception) to identify any other transcription factor whose intestinal loss-of-function causes a phenotype of comparable severity to the phenotype caused by loss of ELT-2. Overall, our results support a model in which ELT-2 is the predominant transcription factor in the post-specification C. elegans intestine and participates directly in the transcriptional regulation of the majority (>80%) of intestinal genes. We present evidence that ELT-2 plays a central role in most aspects of C. elegans intestinal physiology: establishing the structure of the enterocyte, regulating enzymes and transporters involved in digestion and nutrition, responding to environmental toxins and pathogenic infections, and regulating the downstream intestinal components of the daf-2/daf-16 pathway influencing aging and longevity.


Genome Biology | 2006

Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics

Nansheng Chen; Allan K. Mah; Oliver E. Blacque; Jeffrey Shih-Chieh Chu; Kiran Phgora; Mathieu W. Bakhoum; C Rebecca Hunt Newbury; Jaswinder Khattra; Susanna Chan; Anne Go; Evgeni Efimenko; Robert C. Johnsen; Prasad Phirke; Peter Swoboda; Marco A. Marra; Donald G. Moerman; Michel R. Leroux; David L. Baillie; Lincoln Stein

BackgroundThe recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes.ResultsBy screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes (including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of different tissue types and of daf-19(+) and daf-19(-) animals. Finally, we demonstrate that the dye-filling defect of dyf-5(mn400) animals, which is indicative of compromised exposure of cilia to the environment, is caused by a nonsense mutation in the serine/threonine protein kinase gene M04C9.5.ConclusionOur comparative genomics-based predictions may be useful for identifying genes involved in human ciliopathies, including Bardet-Biedl Syndrome (BBS), since the C. elegans orthologs of known human BBS genes contain X-box motifs and are required for normal dye filling in C. elegans ciliated neurons.

Collaboration


Dive into the Jaswinder Khattra's collaboration.

Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen McDonald

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jennifer Asano

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Roth

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge