Javier Garcia-Garcia
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Garcia-Garcia.
Nucleic Acids Research | 2017
Janet Piñero; Àlex Bravo; Núria Queralt-Rosinach; Alba Gutiérrez-Sacristán; Jordi Deu-Pons; Emilio Centeno; Javier Garcia-Garcia; Ferran Sanz; Laura I. Furlong
The information about the genetic basis of human diseases lies at the heart of precision medicine and drug discovery. However, to realize its full potential to support these goals, several problems, such as fragmentation, heterogeneity, availability and different conceptualization of the data must be overcome. To provide the community with a resource free of these hurdles, we have developed DisGeNET (http://www.disgenet.org), one of the largest available collections of genes and variants involved in human diseases. DisGeNET integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies. Additionally, several original metrics are provided to assist the prioritization of genotype–phenotype relationships. The information is accessible through a web interface, a Cytoscape App, an RDF SPARQL endpoint, scripts in several programming languages and an R package. DisGeNET is a versatile platform that can be used for different research purposes including the investigation of the molecular underpinnings of specific human diseases and their comorbidities, the analysis of the properties of disease genes, the generation of hypothesis on drug therapeutic action and drug adverse effects, the validation of computationally predicted disease genes and the evaluation of text-mining methods performance.
BMC Bioinformatics | 2010
Javier Garcia-Garcia; Emre Guney; Ramón Aragüés; Joan Planas-Iglesias; Baldo Oliva
BackgroundThe analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties.ResultsWe introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php.ConclusionsBIANAs approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.
Nucleic Acids Research | 2012
Javier Garcia-Garcia; Sylvia Schleker; Judith Klein-Seetharaman; Baldo Oliva
Protein–protein interactions (PPIs) play a crucial role in biology, and high-throughput experiments have greatly increased the coverage of known interactions. Still, identification of complete inter- and intraspecies interactomes is far from being complete. Experimental data can be complemented by the prediction of PPIs within an organism or between two organisms based on the known interactions of the orthologous genes of other organisms (interologs). Here, we present the BIANA (Biologic Interactions and Network Analysis) Interolog Prediction Server (BIPS), which offers a web-based interface to facilitate PPI predictions based on interolog information. BIPS benefits from the capabilities of the framework BIANA to integrate the several PPI-related databases. Additional metadata can be used to improve the reliability of the predicted interactions. Sensitivity and specificity of the server have been calculated using known PPIs from different interactomes using a leave-one-out approach. The specificity is between 72 and 98%, whereas sensitivity varies between 1 and 59%, depending on the sequence identity cut-off used to calculate similarities between sequences. BIPS is freely accessible at http://sbi.imim.es/BIPS.php.
Nucleic Acids Research | 2014
Jaume Bonet; Joan Planas-Iglesias; Javier Garcia-Garcia; Manuel Alejandro Marín-López; Narcis Fernandez-Fuentes; Baldo Oliva
The function of a protein is determined by its three-dimensional structure, which is formed by regular (i.e. β-strands and α-helices) and non-periodic structural units such as loops. Compared to regular structural elements, non-periodic, non-repetitive conformational units enclose a much higher degree of variability—raising difficulties in the identification of regularities, and yet represent an important part of the structure of a protein. Indeed, loops often play a pivotal role in the function of a protein and different aspects of protein folding and dynamics. Therefore, the structural classification of protein loops is an important subject with clear applications in homology modelling, protein structure prediction, protein design (e.g. enzyme design and catalytic loops) and function prediction. ArchDB, the database presented here (freely available at http://sbi.imim.es/archdb), represents such a resource and has been an important asset for the scientific community throughout the years. In this article, we present a completely reworked and updated version of ArchDB. The new version of ArchDB features a novel, fast and user-friendly web-based interface, and a novel graph-based, computationally efficient, clustering algorithm. The current version of ArchDB classifies 149,134 loops in 5739 classes and 9608 subclasses.
Journal of Molecular Biology | 2013
Joan Planas-Iglesias; Jaume Bonet; Javier Garcia-Garcia; Manuel Alejandro Marín-López; Elisenda Feliu; Baldo Oliva
Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features (loops and domains) to comprehend the molecular mechanisms of PPIs. A paradox in protein-protein binding is to explain how the unbound proteins of a binary complex recognize each other among a large population within a cell and how they find their best docking interface in a short timescale. We use interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation of this classification suggests that the balance between favoring and disfavoring structural features determines if a pair of proteins interacts or not. Our results are in agreement with previous works and support the funnel-like intermolecular energy landscape theory that explains PPIs. We have used these features to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable circumstances.
Chemistry & Biodiversity | 2012
Sylvia Schleker; Javier Garcia-Garcia; Judith Klein-Seetharaman; Baldo Oliva
Salmonellosis caused by Salmonella bacteria is a food‐borne disease and a worldwide health threat causing millions of infections and thousands of deaths every year. This pathogen infects an unusually broad range of host organisms including human and plants. A better understanding of the mechanisms of communication between Salmonella and its hosts requires identifying the interactions between Salmonella and host proteins. Proteinprotein interactions (PPIs) are the fundamental building blocks of communication. Here, we utilize the prediction platform BIANA to obtain the putative Salmonellahuman and SalmonellaArabidopsis interactomes based on sequence and domain similarity to known PPIs. A gold standard list of Salmonellahost PPIs served to validate the quality of the human model. 24,726 and 10,926 PPIs comprising interactions between 38 and 33 Salmonella effectors and virulence factors with 9,740 human and 4,676 Arabidopsis proteins, respectively, were predicted. Putative hub proteins could be identified, and parallels between the two interactomes were discovered. This approach can provide insight into possible biological functions of so far uncharacterized proteins. The predicted interactions are available via a web interface which allows filtering of the database according to parameters provided by the user to narrow down the list of suspected interactions. The interactions are available via a web interface at http://sbi.imim.es/web/SHIPREC.php.
Bioinformatics | 2013
Joan Planas-Iglesias; Manuel Alejandro Marín-López; Jaume Bonet; Javier Garcia-Garcia; Baldo Oliva
SUMMARY Protein-protein interactions play a critical role in many biological processes. Despite that, the number of servers that provide an easy and comprehensive method to predict them is still limited. Here, we present iLoops, a web server that predicts whether a pair of proteins can interact using local structural features. The inputs of the server are as follows: (i) the sequences of the query proteins and (ii) the pairs to be tested. Structural features are assigned to the query proteins by sequence similarity. Pairs of structural features (formed by loops or domains) are classified according to their likelihood to favor or disfavor a protein-protein interaction, depending on their observation in known interacting and non-interacting pairs. The server evaluates the putative interaction using a random forest classifier. AVAILABILITY iLoops is available at http://sbi.imim.es/iLoops.php CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Molecular Informatics | 2012
Javier Garcia-Garcia; Jaume Bonet; Emre Guney; Oriol Fornes; Joan Planas; Baldo Oliva
Proteins are the bricks and mortar of cells. The work of proteins is structural and functional, as they are the principal element of the organization of the cell architecture, but they also play a relevant role in its metabolism and regulation. To perform all these functions, proteins need to interact with each other and with other bio‐molecules, either to form complexes or to recognize precise targets of their action. For instance, a particular transcription factor may activate one gene or another depending on its interactions with other proteins and not only with DNA. Hence, the ability of a protein to interact with other bio‐molecules, and the partners they have at each particular time and location can be crucial to characterize the role of a protein. Proteins rarely act alone; they rather constitute a mingled network of physical interactions or other types of relationships (such as metabolic and regulatory) or signaling cascades. In this context, understanding the function of a protein implies to recognize the members of its neighborhood and to grasp how they associate, both at the systemic and atomic level. The network of physical interactions between the proteins of a system, cell or organism, is defined as the interactome. The purpose of this review is to deepen the description of interactomes at different levels of detail: from the molecular structure of complexes to the global topology of the network of interactions. The approaches and techniques applied experimentally and computationally to attain each level are depicted. The limits of each technique and its integration into a model network, the challenges and actual problems of completeness of an interactome, and the reliability of the interactions are reviewed and summarized. Finally, the application of the current knowledge of protein‐protein interactions on modern network medicine and protein function annotation is also explored.
Bioinformatics | 2014
Emre Guney; Javier Garcia-Garcia; Baldo Oliva
SUMMARY Determining genetic factors underlying various phenotypes is hindered by the involvement of multiple genes acting cooperatively. Over the past years, disease-gene prioritization has been central to identify genes implicated in human disorders. Special attention has been paid on using physical interactions between the proteins encoded by the genes to link them with diseases. Such methods exploit the guilt-by-association principle in the protein interaction network to uncover novel disease-gene associations. These methods rely on the proximity of a gene in the network to the genes associated with a phenotype and require a set of initial associations. Here, we present GUILDify, an easy-to-use web server for the phenotypic characterization of genes. GUILDify offers a prioritization approach based on the protein-protein interaction network where the initial phenotype-gene associations are retrieved via free text search on biological databases. GUILDify web server does not restrict the prioritization to any predefined phenotype, supports multiple species and accepts user-specified genes. It also prioritizes drugs based on the ranking of their targets, unleashing opportunities for repurposing drugs for novel therapies. AVAILABILITY AND IMPLEMENTATION Available online at http://sbi.imim.es/GUILDify.php
Advances in Protein Chemistry | 2014
Oriol Fornes; Javier Garcia-Garcia; Jaume Bonet; Baldo Oliva
Proteins are the bricks and mortar of cells, playing structural and functional roles. In order to perform their function, they interact with each other as well as with other biomolecules such as DNA or RNA. Therefore, to fathom the function of a protein, we require knowing its partners and the atomic details of its interactions (i.e., the structure of the complex). However, the amount of protein interactions with an experimentally determined three-dimensional structure is scarce. Therefore, computational techniques such as homology modeling are foremost to fill this gap. Protein interactions can be modeled using as templates the interactions of homologous proteins, if the structure of the complex is known, or using docking methods. In both approaches, the estimation of the quality of models is essential. There are several ways to address this problem. In this review, we focus on the use of knowledge-based potentials for the analysis of protein interactions. We describe the procedure to derive statistical potentials and split them into different energetic terms that can be used for different purposes. We extensively discuss the fields where knowledge-based potentials have been successfully applied to (1) model protein-protein, protein-DNA, and protein-RNA interactions and (2) predict binding sites (in the protein and in the DNA). Moreover, we provide ready-to-use resources for docking and benchmarking protein interactions.