Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Vinasco is active.

Publication


Featured researches published by Javier Vinasco.


Applied and Environmental Microbiology | 2011

Selection of Fecal Enterococci Exhibiting tcrB-Mediated Copper Resistance in Pigs Fed Diets Supplemented with Copper

R. G. Amachawadi; N. W. Shelton; X. Shi; Javier Vinasco; Steven S. Dritz; Michael D. Tokach; Jim L. Nelssen; H.M. Scott; T. G. Nagaraja

ABSTRACT Copper, as copper sulfate, is increasingly used as an alternative to in-feed antibiotics for growth promotion in weaned piglets. Acquired copper resistance, conferred by a plasmid-borne, transferable copper resistance (tcrB) gene, has been reported in Enterococcus faecium and E. faecalis. A longitudinal field study was undertaken to determine the relationship between copper supplementation and the prevalence of tcrB-positive enterococci in piglets. The study was done with weaned piglets, housed in 10 pens with 6 piglets per pen, fed diets supplemented with a normal (16.5 ppm; control) or an elevated (125 ppm) level of copper. Fecal samples were randomly collected from three piglets per pen on days 0, 14, 28, and 42 and plated on M-Enterococcus agar, and three enterococcal isolates were obtained from each sample. The overall prevalence of tcrB-positive enterococci was 21.1% (38/180) in piglets fed elevated copper and 2.8% (5/180) in the control. Among the 43 tcrB-positive isolates, 35 were E. faecium and 8 were E. faecalis. The mean MICs of copper for tcrB-negative and tcrB-positive enterococci were 6.2 and 22.2 mM, respectively. The restriction digestion of the genomic DNA of E. faecium or E. faecalis with S1 nuclease yielded a band of ∼194-kbp size to which both tcrB and the erm(B) gene probes hybridized. A conjugation assay demonstrated cotransfer of tcrB and erm(B) genes between E. faecium and E. faecalis strains. The higher prevalence of tcrB-positive enterococci in piglets fed elevated copper compared to that in piglets fed normal copper suggests that supplementation of copper in swine diets selected for resistance.


PLOS ONE | 2013

Effects of Ceftiofur and Chlortetracycline Treatment Strategies on Antimicrobial Susceptibility and on tet(A), tet(B), and blaCMY-2 Resistance Genes among E. coli Isolated from the Feces of Feedlot Cattle

Neena Kanwar; H. Morgan Scott; Bo Norby; Guy H. Loneragan; Javier Vinasco; Matthew McGowan; Jennifer L. Cottell; M. M. Chengappa; Jianfa Bai; Patrick Boerlin

A randomized controlled field trial was conducted to evaluate the effects of two sets of treatment strategies on ceftiofur and tetracycline resistance in feedlot cattle. The strategies consisted of ceftiofur crystalline-free acid (CCFA) administered to either one or all of the steers within a pen, followed by feeding or not feeding a therapeutic dose of chlortetracycline (CTC). Eighty-eight steers were randomly allocated to eight pens of 11 steers each. Both treatment regimens were randomly assigned to the pens in a two-way full factorial design. Non-type-specific (NTS) E. coli (n = 1,050) were isolated from fecal samples gathered on Days 0, 4, 12, and 26. Antimicrobial susceptibility profiles were determined using a microbroth dilution technique. PCR was used to detect tet(A), tet(B), and bla CMY-2 genes within each isolate. Chlortetracycline administration greatly exacerbated the already increased levels of both phenotypic and genotypic ceftiofur resistance conferred by prior CCFA treatment (P<0.05). The four treatment regimens also influenced the phenotypic multidrug resistance count of NTS E. coli populations. Chlortetracycline treatment alone was associated with an increased probability of selecting isolates that harbored tet(B) versus tet(A) (P<0.05); meanwhile, there was an inverse association between finding tet(A) versus tet(B) genes for any given regimen (P<0.05). The presence of a tet(A) gene was associated with an isolate exhibiting reduced phenotypic susceptibility to a higher median number of antimicrobials (n = 289, median = 6; 95% CI = 4–8) compared with the tet(B) gene (n = 208, median = 3; 95% CI = 3–4). Results indicate that CTC can exacerbate ceftiofur resistance following CCFA therapy and therefore should be avoided, especially when considering their use in sequence. Further studies are required to establish the animal-level effects of co-housing antimicrobial-treated and non-treated animals together.


Applied and Environmental Microbiology | 2013

Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets.

R. G. Amachawadi; H.M. Scott; C. A. Alvarado; T. R. Mainini; Javier Vinasco; James S. Drouillard; T. G. Nagaraja

Copper, an essential micronutrient, is supplemented in the diet at elevated levels to reduce morbidity and mortality and to promote growth in feedlot cattle. Gut bacteria exposed to copper can acquire resistance, which among enterococci is conferred by a transferable copper resistance gene (tcrB) borne on a plasmid. The present study was undertaken to investigate whether the feeding of copper at levels sufficient to promote growth increases the prevalence of the tcrB gene among the fecal enterococci of feedlot cattle. The study was performed with 261 crossbred yearling heifers housed in 24 pens, with pens assigned randomly to a 2�2 factorial arrangement of treatments consisting of dietary copper and a commercial linseed meal-based energy protein supplement. A total of 22 isolates, each identified as Enterococcus faecium, were positive for tcrB with an overall prevalence of 3.8% (22/576). The prevalence was higher among the cattle fed diets supplemented with copper (6.9%) compared to normal copper levels (0.7%). The tcrB-positive isolates always contained both erm(B) and tet(M) genes. Median copper MICs for tcrB-positive and tcrB-negative enterococci were 22 and 4 mM, respectively. The transferability of the tcrB gene was demonstrated via a filter-mating assay. Multilocus variable number tandem repeat analysis revealed a genetically diverse population of enterococci. The finding of a strong association between the copper resistance gene and other antibiotic (tetracycline and tylosin) resistance determinants is significant because enterococci remain potential pathogens and have the propensity to transfer resistance genes to other bacteria in the gut.


Preventive Veterinary Medicine | 2014

Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs

Getahun E. Agga; H.M. Scott; R. G. Amachawadi; T. G. Nagaraja; Javier Vinasco; Jianfa Bai; Bo Norby; David G. Renter; Steven S. Dritz; Jim L. Nelssen; Michael D. Tokach

Feed-grade chlortetracycline (CTC) and copper are both widely utilized in U.S. pig production. Cluster randomized experiment was conducted to evaluate the effects of CTC and copper supplementation in weaned pigs on antimicrobial resistance (AMR) among fecal Escherichia coli. Four treatment groups: control, copper, CTC, or copper plus CTC were randomly allocated to 32 pens with five pigs per pen. Fecal samples were collected weekly from three pigs per pen for six weeks. Two E. coli isolates per fecal sample were tested for phenotypic and genotypic resistance against antibiotics and copper. Data were analyzed with multilevel mixed effects logistic regression, multivariate probit analysis and discrete time survival analysis. CTC-supplementation was significantly (99% [95% CI=98-100%]) associated with increased tetracycline resistance compared to the control group (95% [95% CI=94-97%]). Copper supplementation was associated with decreased resistance to most of the antibiotics tested, including cephalosporins, over the treatment period. Overall, 91% of the E. coli isolates were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). tetA and blaCMY-2 genes were positively associated (P<0.05) with MDR categorization, while tetB and pcoD were negatively associated with MDR. tetA and blaCMY-2 were positively associated with each other and in turn, these were negatively associated with both tetB and pcoD genes; which were also positively associated with one another. Copper minimum inhibitory concentration was not affected by copper supplementation or by pcoD gene carriage. CTC supplementation was significantly associated with increased susceptibilities of E. coli to copper (HR=7 [95% CI=2.5-19.5]) during treatment period. In conclusion, E. coli isolates from the nursery pigs exhibited high levels of antibiotic resistance, with diverse multi-resistant phenotypic profiles. The roles of copper supplementation in pig production, and pco-mediated copper resistance among E. coli in particular, need to be further explored since a strong negative association of pco with both tetA and blaCMY-2 points to opportunities for selecting a more innocuous resistance profile.


Scientific Reports | 2015

Impact of treatment strategies on cephalosporin and tetracycline resistance gene quantities in the bovine fecal metagenome

Neena Kanwar; H. Morgan Scott; Bo Norby; Guy H. Loneragan; Javier Vinasco; Jennifer L. Cottell; Gabhan Chalmers; M. M. Chengappa; Jianfa Bai; Patrick Boerlin

The study objective was to determine the effects of two treatment regimens on quantities of ceftiofur and tetracycline resistance genes in feedlot cattle. The two regimens were ceftiofur crystalline-free acid (CCFA) administered to either one or all steers within a pen and subsequent feeding/not feeding of therapeutic doses of chlortetracycline. A 26-day randomized controlled field trial was conducted on 176 steers. Real-time PCR was used to quantify blaCMY-2, blaCTX-M, tet(A), tet(B), and 16S rRNA gene copies/gram of feces from community DNA. A significant increase in ceftiofur resistance and a decrease in tetracycline resistance elements were observed among the treatment groups in which all steers received CCFA treatment, expressed as gene copies/gram of feces. Subsequent chlortetracycline administration led to rapid expansion of both ceftiofur and tetracycline resistance gene copies/gram of feces. Our data suggest that chlortetracycline is contraindicated when attempting to avoid expansion of resistance to critically important third-generation cephalosporins.


Preventive Veterinary Medicine | 2015

Effects of chlortetracycline and copper supplementation on the prevalence, distribution, and quantity of antimicrobial resistance genes in the fecal metagenome of weaned pigs

Getahun E. Agga; H. Morgan Scott; Javier Vinasco; T. G. Nagaraja; R. G. Amachawadi; Jianfa Bai; Bo Norby; David G. Renter; Steven S. Dritz; Jim L. Nelssen; Michael D. Tokach

Use of in-feed antibiotics such as chlortetracycline (CTC) in food animals is fiercely debated as a cause of antimicrobial resistance in human pathogens; as a result, alternatives to antibiotics such as heavy metals have been proposed. We used a total community DNA approach to experimentally investigate the effects of CTC and copper supplementation on the presence and quantity of antimicrobial resistance elements in the gut microbial ecology of pigs. Total community DNA was extracted from 569 fecal samples collected weekly over a 6-week period from groups of 5 pigs housed in 32 pens that were randomized to receive either control, CTC, copper, or copper plus CTC regimens. Qualitative and quantitative PCR were used to detect the presence of 14 tetracycline resistance (tet) genes and to quantify gene copies of tetA, tetB, blaCMY-2 (a 3rd generation cephalosporin resistance gene), and pcoD (a copper resistance gene), respectively. The detection of tetA and tetB decreased over the subsequent sampling periods, whereas the prevalence of tetC and tetP increased. CTC and copper plus CTC supplementation increased both the prevalence and gene copy numbers of tetA, while decreasing both the prevalence and gene copies of tetB. In summary, tet gene presence was initially very diverse in the gut bacterial community of weaned pigs; thereafter, copper and CTC supplementation differentially impacted the prevalence and quantity of the various tetracycline, ceftiofur and copper resistance genes resulting in a less diverse gene population.


Foodborne Pathogens and Disease | 2015

Effects of In-Feed Copper, Chlortetracycline, and Tylosin on the Prevalence of Transferable Copper Resistance Gene, tcrB, Among Fecal Enterococci of Weaned Piglets

R. G. Amachawadi; Scott Hm; Javier Vinasco; Tokach; Steven S. Dritz; Jim L. Nelssen; T. G. Nagaraja

Heavy metals, such as copper, are increasingly supplemented in swine diets as an alternative to antibiotics to promote growth. Enterococci, a common gut commensal, acquire plasmid-borne, transferable copper resistance (tcrB) gene-mediated resistance to copper. The plasmid also carried resistance genes to tetracyclines and macrolides. The potential genetic link between copper and antibiotic resistance suggests that copper supplementation may exert a selection pressure for antimicrobial resistance. Therefore, a longitudinal study was conducted to investigate the effects of in-feed copper, chlortetracycline, and tylosin alone or in combination on the selection and co-selection of antimicrobial-resistant enterococci. The study included 240 weaned piglets assigned randomly to 6 dietary treatment groups: control, copper, chlortetracycline, tylosin, copper and chlortetracycline, and copper and tylosin. Feces were collected before (day 0), during (days 7, 14, 21), and after (days 28 and 35) initiating treatment, and enterococcal isolates were obtained from each fecal sample and tested for genotypic and phenotypic resistance to copper and antibiotics. A total of 2592 enterococcal isolates were tested for tcrB by polymerase chain reaction. The overall prevalence of tcrB-positive enterococci was 14.3% (372/2592). Among the tcrB-positive isolates, 331 were Enterococcus faecium and 41 were E. faecalis. All tcrB-positive isolates contained both erm(B) and tet(M) genes. The median minimum inhibitory concentration of copper for tcrB-negative and tcrB-positive enterococci was 6 and 18 mM, respectively. The majority of isolates (95/100) were resistant to multiple antibiotics. In conclusion, supplementing copper or antibiotics alone did not increase copper-resistant enterococci; however, supplementing antibiotics with copper increased the prevalence of the tcrB gene among fecal enterococci of piglets.


International Scholarly Research Notices | 2013

Detection of Mycobacterium avium Subspecies Paratuberculosis from Intestinal and Nodal Tissue of Dogs and Cats

Kate S. KuKanich; Javier Vinasco; H. Morgan Scott

Objective. To determine prevalence of MAP in intestinal and nodal tissue from dogs and cats at necropsy at Kansas State University and to determine if an association existed between presence of MAP and gastrointestinal inflammation, clinical signs, or rural exposure. Procedures. Tissue samples were collected from the duodenum, ileum, and mesenteric and colic nodes of adult dogs (73) and cats (37) undergoing necropsy for various reasons. DNA was extracted and analyzed for insertion sequence 900 using nested PCR. Positive samples were confirmed with DNA sequencing. An online mapping system was used to determine if patients lived in an urban or rural environment based on the home address. Medical records were reviewed for clinical signs and histological findings at necropsy. Results. MAP was identified from 3/73 (4.1%) dogs and 3/37 (8.1%) cats. There was no documented association between presence of MAP and identification of histologic-confirmed gastrointestinal inflammation, gastrointestinal clinical signs, or exposure to a rural environment. Conclusion and Clinical Relevance. MAP-specific DNA can be identified within the intestinal and nodal tissue of dogs and cats that do not have pathological lesions or clinical signs consistent with gastrointestinal disease. The significance of this organisms presence without associated gastrointestinal pathology is unknown.


Journal of Applied Microbiology | 2015

Effects of in‐feed copper and tylosin supplementations on copper and antimicrobial resistance in faecal enterococci of feedlot cattle

R. G. Amachawadi; Scott Hm; C. Aperce; Javier Vinasco; James S. Drouillard; T. G. Nagaraja

The objective was to investigate whether in‐feed supplementation of copper, at elevated level, co‐selects for macrolide resistance in faecal enterococci.


Scientific Reports | 2017

Population dynamics of enteric Salmonella in response to antimicrobial use in beef feedlot cattle

Naomi Ohta; Keri N. Norman; Bo Norby; Sara D. Lawhon; Javier Vinasco; Henk C. den Bakker; Guy H. Loneragan; H. Morgan Scott

A randomized controlled longitudinal field trial was undertaken to assess the effects of injectable ceftiofur crystalline-free acid (CCFA) versus in-feed chlortetracycline on the temporal dynamics of Salmonella enterica spp. enterica in feedlot cattle. Two replicates of 8 pens (total 176 steers) received one of 4 different regimens. All, or one, out of 11 steers were treated with CCFA on day 0 in 8 pens, with half of the pens later receiving three 5-day regimens of chlortetracycline from day 4 to day 20. Salmonella was isolated from faecal samples and antimicrobial susceptibility was analysed via microbroth dilution. Serotype was determined by whole-genome sequencing. On day 0, mean Salmonella prevalence was 75.0% and the vast majority of isolates were pansusceptible. Both antimicrobials reduced overall prevalence of Salmonella; however, these treatments increased the proportion of multi-drug resistant (MDR) Salmonella from day 4 through day 26, which was the last day of faecal collection. Only six Salmonella serotypes were detected. Salmonella serotype Reading isolates were extensively MDR, suggesting a strong association between serotype and resistance. Our study demonstrates that the selection pressures of a 3rd generation cephalosporin and chlortetracycline during the feeding period contribute to dynamic population shifts between antimicrobial susceptible and resistant Salmonella.

Collaboration


Dive into the Javier Vinasco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Norby

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfa Bai

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge