Jayanta Parui
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jayanta Parui.
Applied Physics Letters | 2008
Jayanta Parui; S. B. Krupanidhi
Antiferroelectric lanthanum-modified PbZrO3 thin films with La contents between 0 and 6 at. % have been deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel route. On the extent of La-modification, maximum polarization (Pmax) and recoverable energy density (W) have been enhanced followed by their subsequent reduction. A maximum Pmax ( ∼ 0.54 C/m2 at ∼ 60 MV/m) as well as a maximum W ( ∼ 14.9 J/cc at ∼ 60 MV/m) have been achieved on 5% La modification. Both Pmax and W have been found to be strongly dependent on La-induced crystallographic orientations.
Journal of Applied Physics | 2007
Arnab Mukherjee; P. Victor; Jayanta Parui; S. B. Krupanidhi
Barium zirconium titanate [Ba(Zr0.05Ti0.95)O3, BZT] thin films were prepared by pulsed laser ablation technique and dc leakage current conduction behavior was extensively studied. The dc leakage behavior study is essential, as it leads to degradation of the data storage devices. The current-voltage (I-V) of the thin films showed an Ohmic behavior for the electric field strength lower than 7.5 MV/m. Nonlinearity in the current density-voltage (J-V) behavior has been observed at an electric field above 7.5 MV/m. Different conduction mechanisms have been thought to be responsible for the overall I-V characteristics of BZT thin films. The J-V behavior of BZT thin films was found to follow Lampert’s theory of space charge limited conduction similar to what is observed in an insulator with charge trapping moiety. The Ohmic and trap filled limited regions have been explicitly observed in the J-V curves, where the saturation prevailed after a voltage of 6.5 V referring the onset of a trap-free square region. Two different activation energy values of 1.155 and 0.325 eV corresponding to two different regions have been observed in the Arrhenius plot, which was attributed to two different types of trap levels present in the film, namely, deep and shallow traps.
Journal of Applied Physics | 2006
Jayanta Parui; S. B. Krupanidhi
Highly (110) preferred orientated antiferroelectric PbZrO3 (PZ) and La-modified PZ thin films have been fabricated on Pt∕Ti∕SiO2∕Si substrates using sol-gel process. Dielectric properties, electric field induced ferroelectric polarization, and the temperature dependence of the dielectric response have been explored as a function of composition. The Tc has been observed to decrease by ∼ 17°C per 1mol% of La doping. Double hysteresis loops were seen with zero remnant polarization and with coercive fields in between 176 and 193kV∕cm at 80°C for antiferroelectric to ferroelectric phase transformation. These slim loops have been explained by the high orientation of the films along the polar direction of the antiparallel dipoles of a tetragonal primitive cell and by the strong electrostatic interaction between La ions and oxygen ions in an ABO3 perovskite unit cell. High quality films exhibited very low loss factor less than 0.015 at room temperature and pure PZ; 1 and 2mol% La doped PZs have shown the room tem...
Journal of Physics D | 2015
Banavoth Murali; Jayanta Parui; M. Madhuri; S. B. Krupanidhi
Al-doped ZnO thin films were synthesized from oxygen reactive co-sputtering of Al and Zn targets. Explicit doping of Al in the highly c-axis oriented crystalline films of ZnO was manifested in terms of structural optical and electrical properties. Electrical conduction with different extent of Al doping into the crystal lattice of ZnO (AZnO) were characterized by frequency dependent (40 Hz-50 MHz) resistance. From the frequency dependent resistance, the ac conduction of them, and correlations of localized charge particles in the crystalline films were studied. The dc conduction at the low frequency region was found to increase from 8.623 mu A to 1.14 mA for the samples AZnO1 (1 wt% Al) and AZnO2 (2 wt% Al), respectively. For the sample AZnO10 (10 wt% Al) low frequency dc conduction was not found due to the electrode polarization effect. The measure of the correlation length by inverse of threshold frequency (omega(0)) showed that on application of a dc electric field such length decreases and the decrease in correlation parameter(s) indicates that the correlation between potentials wells of charge particles decreases for the unidirectional nature of dc bias. The comparison between the correlation length and the extent of correlation in the doped ZnO could not be made due to the observation of several threshold frequencies at the extent of higher doping. Such threshold frequencies were explained by the population possibility of correlated charge carriers that responded at different frequencies. For AZnO2 (2% Al), the temperature dependent (from 4.5 to 288 K) resistance study showed that the variable range hopping mechanism was the most dominating conduction mechanism at higher temperature whereas at low temperature region it was influenced by the small polaronic hopping conduction mechanism. There was no significant influence found in these mechanisms on applications of 1, 2 and 3 V as biases.
Journal of Applied Physics | 2010
Jitendra Singh; A. T. Kalghatgi; Jayanta Parui; S. B. Krupanidhi
Cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films were deposited by pulsed laser ablation on Pt(200)/SiO2/Si at 500, 550, 600, and 650 °C. The thin films with (222) preferred orientation were found to grow at 650 °C with better crystallinity which was established by the lowest full-width half maxima of ∼0.38. The dielectric response of the thin films grown at 650 °C have been characterized within a temperature range of 270–650 K and a frequency window of 0.1–100 kHz. The dielectric dispersion in the thin films shows a Maxwell–Wagner type relaxation with two different kinds of response confirmed by temperature dependent Nyquist plots. The ac conduction of the films showed a varied behavior in two different frequency regions. The power law exponent values of more than 1 at high frequency are explained by a jump-relaxation-model. The possibility of grain boundary related large polaronic hopping, due to two different power law exponents and transformation of double to single response in Nyquist plots at high temp...
Journal of Applied Physics | 2008
Jayanta Parui; S. B. Krupanidhi
Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.
Journal of Physics D | 2011
Neena S. John; D. Saranya; Jayanta Parui; S. B. Krupanidhi
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.
Archive | 2014
Jayanta Parui; D. Saranya; S. B. Krupanidhi
The new emerging fields of MEMS-based energy harvesting from piezoelectric materials, lead to the development of solid-state electrostatic energy storage for better power/energy distribution for renewable energy and the solid-state electrocaloric cooling for low energy and hazard free refrigeration. Among them it is being reported that on application of 8.693 TPas−1 oscillated stress generates 10 Vs−1 oscillated voltage in 300 nm 0.75PMN–0.15PT thin films where 22 Jcc−1 s−1 of oscillated energy density can be harvested on application of 15 TPas−1 oscillated pressure upon 500 nm thin film of same material. It is also described that La modified antiferroelectric PbZrO3 (PZ) thin films are the potential materials that can achieve the high energy density storage density in the order of 103 J/kg. Though PZT-based antiferroelectric cooling triggered the research on the materials for electrocaloric cooling by the amount of 12 K adiabatic decrease in temperature on withdrawal of electric field, the decrease in temperature by 11.4 K in pure PZ and by 31 K in 0.63PMN–0.37PT thin film are found commendable.
Ferroelectrics | 2013
D. Saranya; Jayanta Parui; S. B. Krupanidhi
The electrocaloric effect (ECE) of 0.85PbMg1/3Nb2/3O3–0.15PbTiO3 (0.85PMN-0.15PT) thin films deposited on (111) Pt/TiO2/SiO2/Si substrate by pulsed laser deposition (PLD) has been calculated. The reversible adiabatic temperature was calculated indirectly using the Maxwells relation . Permittivity and P-E measurements show an anomaly at 11°C on heating only. This anomaly previously reported are claimed to arise due to the PNR depolarization upon heating. The absence of this anomaly during cooling suggests that no structural phase transition takes place. A negative electrocaloric effect is observed which is explained by the increase in the entropy term.
Integrated Ferroelectrics | 2010
Nirupam Banerjee; Jayanta Parui; S. B. Krupanidhi
Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range ∼103–104. Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.