Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Je Won Park is active.

Publication


Featured researches published by Je Won Park.


Journal of the American Chemical Society | 2011

Biosynthesis of the Allylmalonyl-CoA Extender Unit for the FK506 Polyketide Synthase Proceeds through a Dedicated Polyketide Synthase and Facilitates the Mutasynthesis of Analogues

SangJoon Mo; Donghwan Kim; Jong-Hyun Lee; Je Won Park; Devi B. Basnet; Yeon Hee Ban; Young Ji Yoo; Shu-Wei Chen; Sung Ryeol Park; Eun Ae Choi; Eunji Kim; Ying-Yu Jin; Sung-Kwon Lee; Ju Yeol Park; Yuan Liu; Mi Ok Lee; Keum Soon Lee; Sang Jun Kim; Dooil Kim; Byoung Chul Park; Sang-gi Lee; Ho Jeong Kwon; Joo-Won Suh; Bradley S. Moore; Si-Kyu Lim; Yeo Joon Yoon

The allyl moiety of the immunosuppressive agent FK506 is structurally unique among polyketides and critical for its potent biological activity. Here, we detail the biosynthetic pathway to allylmalonyl-coenzyme A (CoA), from which the FK506 allyl group is derived, based on a comprehensive chemical, biochemical, and genetic interrogation of three FK506 gene clusters. A discrete polyketide synthase (PKS) with noncanonical domain architecture presumably in coordination with the fatty acid synthase pathway of the host catalyzes a multistep enzymatic reaction to allylmalonyl-CoA via trans-2-pentenyl-acyl carrier protein. Characterization of this discrete pathway facilitated the engineered biosynthesis of novel allyl group-modified FK506 analogues, 36-fluoro-FK520 and 36-methyl-FK506, the latter of which exhibits improved neurite outgrowth activity. This unique feature of FK506 biosynthesis, in which a dedicated PKS provides an atypical extender unit for the main modular PKS, illuminates a new strategy for the combinatorial biosynthesis of designer macrolide scaffolds as well as FK506 analogues.


Journal of Industrial Microbiology & Biotechnology | 2009

Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor

SangJoon Mo; Yeon-Hee Ban; Je Won Park; Young Ji Yoo; Yeo Joon Yoon

FK506 is a 23-membered polyketide macrolide with immunosuppressant activity produced by Streptomyces species. The production of FK506 in S. clavuligerus CKD1119 (KCTC 10561BP) was improved by enhancing the supply of biosynthetic precursors. This improvement was approximately 2.5-fold (15xa0mg/l) with the supplementation of 10xa0mM methyl oleate, which is the probable source of acyl-CoAs, to R2YE medium. When the level of FK506 production reached its maximum, the intracellular concentration of methylmalonyl-CoA in S. clavuligerus CKD1119 supplemented with methyl oleate was 12.5-fold higher than that of the unsupplemented strain, suggesting that an increased methylmalonyl-CoA level caused the high-level production of FK506. The following three pathways for the production of (2S)-methylmalonyl-CoA were evaluated to identify the effective precursor supply pathway that can support the high production of FK506 in S. clavuligerus CKD1119: propionyl-CoA carboxylase, methylmalonyl-CoA mutase (MCM), and malonyl/methylmalonyl-CoA ligase. Of the three pathways examined, the MCM pathway supported the highest levels of FK506 production. The expression of MCM in S. clavuligerus CKD1119 led to a threefold and 1.5-fold increase in the methylmalonyl-CoA pool and FK506 production, respectively. Supplementing the culture broth of S. clavuligerus CKD1119 expressing MCM with methyl oleate resulted in an additional twofold increase in the FK506 titer (17.8xa0mg/l). Overall, these results show that the methylmalonyl-CoA supply is a limiting factor for FK506 biosynthesis and that among the three pathways analyzed, the MCM pathway is the most effective precursor supply pathway supporting the highest titer of FK506 in S. clavuligerus CKD1119.


Nature Chemical Biology | 2011

Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation

Je Won Park; Sung Ryeol Park; Keshav Kumar Nepal; Ah Reum Han; Yeon Hee Ban; Young Ji Yoo; Eun Ji Kim; Eui Min Kim; Dooil Kim; Jae Kyung Sohng; Yeo Joon Yoon

Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set

Je Won Park; Jay Sung Joong Hong; Niranjan Parajuli; Won Seok Jung; Sung Ryeol Park; Si-Kyu Lim; Jae Kyung Sohng; Yeo Joon Yoon

Since the first use of streptomycin as an effective antibiotic drug in the treatment of tuberculosis, aminoglycoside antibiotics have been widely used against a variety of bacterial infections for over six decades. However, the pathways for aminoglycoside biosynthesis still remain unclear, mainly because of difficulty in genetic manipulation of actinomycetes producing this class of antibiotics. Gentamicin belongs to the group of 4,6-disubstituted aminoglycosides containing a characteristic core aminocyclitol moiety, 2-deoxystreptamine (2-DOS), and the recent discovery of its biosynthetic gene cluster in Micromonospora echinospora has enabled us to decipher its biosynthetic pathway. To determine the minimal set of genes and their functions for the generation of gentamicin A2, the first pseudotrisaccharide intermediate in the biosynthetic pathway for the gentamicin complex, various sets of candidate genes from M. echinospora and other related aminoglycoside-producing strains were introduced into a nonaminoglycoside producing strain of Streptomyces venezuelae. Heterologous expression of different combinations of putative 2-DOS biosynthetic genes revealed that a subset, gtmB-gtmA-gacH, is responsible for the biosynthesis of this core aminocyclitol moiety of gentamicin. Expression of gtmG together with gtmB-gtmA-gacH led to production of 2′-N-acetylparomamine, demonstrating that GtmG acts as a glycosyltransferase that adds N-acetyl-d-glucosamine (GLcNA) to 2-DOS. Expression of gtmM in a 2′-N-acetylparomamine-producing recombinant S. venezuelae strain generated paromamine. Expression of gtmE in an engineered paromamine-producing strain of S. venezuelae successfully generated gentamicin A2, indicating that GtmE is another glycosyltransferase that attaches d-xylose to paromamine. These results represent in vivo evidence elucidating the complete biosynthetic pathway of the pseudotrisaccharide aminoglycoside.


Applied and Environmental Microbiology | 2011

Development of a Streptomyces venezuelae-Based Combinatorial Biosynthetic System for the Production of Glycosylated Derivatives of Doxorubicin and Its Biosynthetic Intermediates

Ah Reum Han; Je Won Park; Mi Kyeong Lee; Yeon Hee Ban; Young Ji Yoo; Eun Ji Kim; Eunji Kim; Byung-Gee Kim; Jae Kyung Sohng; Yeo Joon Yoon

ABSTRACT Doxorubicin, one of the most widely used anticancer drugs, is composed of a tetracyclic polyketide aglycone and l-daunosamine as a deoxysugar moiety, which acts as an important determinant of its biological activity. This is exemplified by the fewer side effects of semisynthetic epirubicin (4′-epi-doxorubicin). An efficient combinatorial biosynthetic system that can convert the exogenous aglycone ε-rhodomycinone into diverse glycosylated derivatives of doxorubicin or its biosynthetic intermediates, rhodomycin D and daunorubicin, was developed through the use of Streptomyces venezuelae mutants carrying plasmids that direct the biosynthesis of different nucleotide deoxysugars and their transfer onto aglycone, as well as the postglycosylation modifications. This system improved epirubicin production from ε-rhodomycinone by selecting a substrate flexible glycosyltransferase, AknS, which was able to transfer the unnatural sugar donors and a TDP-4-ketohexose reductase, AvrE, which efficiently supported the biosynthesis of TDP-4-epi-l-daunosamine. Furthermore, a range of doxorubicin analogs containing diverse deoxysugar moieties, seven of which are novel rhodomycin D derivatives, were generated. This provides new insights into the functions of deoxysugar biosynthetic enzymes and demonstrates the potential of the S. venezuelae-based combinatorial biosynthetic system as a simple biological tool for modifying structurally complex sugar moieties attached to anthracyclines as an alternative to chemical syntheses for improving anticancer agents.


Journal of Biotechnology | 2009

Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae

Sung Ryeol Park; Jin A Yoon; Ji Hye Paik; Je Won Park; Yeon-Hee Ban; Eun Ji Kim; Young Ji Yoo; Ah Reum Han; Yeo Joon Yoon

Phenylpropanoids, including flavonoids and stilbenes, are plant secondary metabolites with potential pharmacological and nutraceutical properties. To expand the applicability of Streptomyces venezuelae as a heterologous host to plant polyketide production, flavonoid and stilbene biosynthetic genes were expressed in an engineered strain of S. venezuelae DHS2001 bearing a deletion of native pikromycin polyketide synthase gene. A plasmid expressing the 4-coumarate/cinnamate:coenzyme A ligase from Streptomyces coelicolor (ScCCL) and the chalcone synthase from Arabidopsis thaliana (atCHS) under the control of a single ermE* promoter was constructed and introduced into S. venezuelae DHS2001. The resulting strain produced racemic naringenin and pinocembrin from 4-coumaric acid and cinnamic acid, respectively. Placement of an additional ermE* promoter upstream of the codon-optimized atCHS (atCHS(op)) gene significantly increased the yield of both flavanones. Expression of codon-optimized chalcone isomerase gene from Medicago sativa, together with ScCCL and atCHS(op) genes led to production of (2S)-flavanones, but the yield was reduced. On the other hand, a recombinant strain harboring the ScCCL and codon-optimized stilbene synthase gene from Arachis hypogaea generated stilbenes such as resveratrol and pinosylvin. This is the first report on the heterologous expression of plant phenylpropanoid biosynthetic pathways in Streptomyces genus.


Applied Microbiology and Biotechnology | 2011

A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253

Young Ji Yoo; Je Won Park; Sung Ryeol Park; Ah Reum Han; Yeon Hee Ban; Eun Ji Kim; Eunji Kim; Yeo Joon Yoon

Rapamycin is a macrocyclic polyketide with immunosuppressive, antifungal, and anticancer activity produced by Streptomyces hygroscopicus ATCC 29253. Rapamycin production by a mutant strain (UV2-2) induced by ultraviolet mutagenesis was improved by approximately 3.2-fold (23.6xa0mg/l) compared to that of the wild-type strain. The comparative analyses of gene expression and intracellular acyl-CoA pools between wild-type and the UV2-2 strains revealed that the increased production of rapamycin in UV2-2 was due to the prolonged expression of rapamycin biosynthetic genes, but a depletion of intracellular methylmalonyl-CoA limited the rapamycin biosynthesis of the UV2-2 strain. Therefore, three different metabolic pathways involved in the biosynthesis of methylmalonyl-CoA were evaluated to identify the effective precursor supply pathway that can support the high production of rapamycin: propionyl-CoA carboxylase (PCC), methylmalonyl-CoA mutase, and methylmalonyl-CoA ligase. Among them, only the PCC pathway along with supplementation of propionate was found to be effective for an increase in intracellular pool of methylmalonyl-CoA and rapamycin titers in UV2-2 strain (42.8xa0mg/l), indicating that the PCC pathway is a major methylmalonyl-CoA supply pathway in the rapamycin producer. These results demonstrated that the combined approach involving traditional mutagenesis and metabolic engineering could be successfully applied to the diagnosis of yield-limiting factors and the enhanced production of industrially and clinically important polyketide compounds.


Applied and Environmental Microbiology | 2013

Probing 3-Hydroxyflavone for In Vitro Glycorandomization of Flavonols by YjiC

Ramesh Prasad Pandey; Prakash Parajuli; Niranjan Koirala; Je Won Park; Jae Kyung Sohng

ABSTRACT The glycosylation of five different flavonols, fisetin, quercetin, myricetin, kaempferol, and 3-hydroxyflavone, was achieved by applying YjiC. 3-Hydroxyflavone was selected as a probe for in vitro glycorandomization of all flavonols using diverse nucleotide diphosphate-d/l-sugars. This study unlocked the possibilities of the glycodiversification of flavonols and the generation of novel compounds as future therapeutics.


Applied Microbiology and Biotechnology | 2008

Heterologous production of epothilones B and D in Streptomyces venezuelae

Sung Ryeol Park; Je Won Park; Ah Reum Han; Yeon Hee Ban; Eun Ji Kim; Jae Kyung Sohng; Sang Jun Sim; Yeo Joon Yoon

Epothilones, produced from the myxobacterium Sorangium cellulosum, are potential anticancer agents that stabilize microtubules in a similar manner to paclitaxel. The entire epothilone biosynthetic gene cluster was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin polyketide synthase gene cluster. The resulting strains produced approximately 0.1xa0μg/l of epothilone B as a sole product after 4xa0days cultivation. Deletion of an epoF encoding the cytochrome P450 epoxidase gave rise to a mutant that selectively produces 0.4xa0μg/l of epothilone D. To increase the production level of epothilones B and D, an additional copy of the positive regulatory gene pikD was introduced into the chromosome of both S. venezuleae mutant strains. The resulting strains showed enhanced production of corresponding compounds (approximately 2-fold). However, deletion of putative transport genes, orf3 and orf14 in the epothilone D producing S. venezuelae mutant strain, led to an approximately 3-fold reduction in epothilone D production. These results introduce S. venezuelae as an alternative heterologous host for the production of these valuable anticancer agents and demonstrate the possibility of engineering this strain as a generic heterologous host for the production of polyketides and hybrid polyketide-nonribosomal peptides.


Applied Microbiology and Biotechnology | 2007

Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae

Won Seok Jung; Ah Reum Han; Jay Sung Joong Hong; Sung Ryeol Park; Cha Yong Choi; Je Won Park; Yeo Joon Yoon

To develop a system for combinatorial biosynthesis of glycosylated macrolides, Streptomyces venezuelae was genetically manipulated to be deficient in the production of its macrolide antibiotics by deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of thymidine diphosphate (TDP)-d-quinovose or TDP-d-olivose in conjunction with the glycosyltransferase–auxiliary protein pair DesVII/DesVIII derived from S. venezuelae were expressed in the mutant strain. Feeding the representative 12-, 14-, and 16-membered ring macrolactones including 10-deoxymethynolide, narbonolide, and tylactone, respectively, to each mutant strain capable of producing TDP-d-quinovose or TDP-d-olivose resulted in the successful production of the corresponding quinovose- and olivose-glycosylated macrolides. In mutant strains where the DesVII/DesVIII glycosyltransferase–auxiliary protein pair was replaced by TylMII/TylMIII derived from Streptomyces fradiae, quinovosyl and olivosyl tylactone were produced; however, neither glycosylated 10-deoxymethynolide nor narbonolide were generated, suggesting that the glycosyltransferase TylMII has more stringent substrate specificity toward its aglycones than DesVII. These results demonstrate successful generation of structurally diverse hybrid macrolides using a S. venezuelae in vivo system and provide further insight into the substrate flexibility of glycosyltransferases.

Collaboration


Dive into the Je Won Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ah Reum Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Ji Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eunji Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge