Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung Ryeol Park is active.

Publication


Featured researches published by Sung Ryeol Park.


Journal of the American Chemical Society | 2011

Biosynthesis of the Allylmalonyl-CoA Extender Unit for the FK506 Polyketide Synthase Proceeds through a Dedicated Polyketide Synthase and Facilitates the Mutasynthesis of Analogues

SangJoon Mo; Donghwan Kim; Jong-Hyun Lee; Je Won Park; Devi B. Basnet; Yeon Hee Ban; Young Ji Yoo; Shu-Wei Chen; Sung Ryeol Park; Eun Ae Choi; Eunji Kim; Ying-Yu Jin; Sung-Kwon Lee; Ju Yeol Park; Yuan Liu; Mi Ok Lee; Keum Soon Lee; Sang Jun Kim; Dooil Kim; Byoung Chul Park; Sang-gi Lee; Ho Jeong Kwon; Joo-Won Suh; Bradley S. Moore; Si-Kyu Lim; Yeo Joon Yoon

The allyl moiety of the immunosuppressive agent FK506 is structurally unique among polyketides and critical for its potent biological activity. Here, we detail the biosynthetic pathway to allylmalonyl-coenzyme A (CoA), from which the FK506 allyl group is derived, based on a comprehensive chemical, biochemical, and genetic interrogation of three FK506 gene clusters. A discrete polyketide synthase (PKS) with noncanonical domain architecture presumably in coordination with the fatty acid synthase pathway of the host catalyzes a multistep enzymatic reaction to allylmalonyl-CoA via trans-2-pentenyl-acyl carrier protein. Characterization of this discrete pathway facilitated the engineered biosynthesis of novel allyl group-modified FK506 analogues, 36-fluoro-FK520 and 36-methyl-FK506, the latter of which exhibits improved neurite outgrowth activity. This unique feature of FK506 biosynthesis, in which a dedicated PKS provides an atypical extender unit for the main modular PKS, illuminates a new strategy for the combinatorial biosynthesis of designer macrolide scaffolds as well as FK506 analogues.


Applied Microbiology and Biotechnology | 2010

Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects

Sung Ryeol Park; Ah Reum Han; Yeon-Hee Ban; Young Ji Yoo; Eun Ji Kim; Yeo Joon Yoon

Polyketides comprise one of the major families of natural products. They are found in a wide variety of bacteria, fungi, and plants and include a large number of medically important compounds. Polyketides are biosynthesized by polyketide synthases (PKSs). One of the major groups of polyketides are the macrolides, the activities of which are derived from the presence of a macrolactone ring to which one or more 6-deoxysugars are attached. The core macrocyclic ring is biosynthesized from acyl-CoA precursors by PKS. Genetic manipulation of PKS-encoding genes can result in predictable changes in the structure of the macrolactone component, many of which are not easily achieved through standard chemical derivatization or total synthesis. Furthermore, many of the changes, including post-PKS modifications such as glycosylation and oxidation, can be combined for further structural diversification. This review highlights the current state of novel macrolide production with a focus on the genetic engineering of PKS and post-PKS tailoring genes. Such engineering of the metabolic pathways for macrolide biosynthesis provides attractive alternatives for the production of diverse non-natural compounds. Other issues of importance, including the engineering of precursor pathways and heterologous expression of macrolide biosynthetic genes, are also considered.


Nature Chemical Biology | 2011

Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation

Je Won Park; Sung Ryeol Park; Keshav Kumar Nepal; Ah Reum Han; Yeon Hee Ban; Young Ji Yoo; Eun Ji Kim; Eui Min Kim; Dooil Kim; Jae Kyung Sohng; Yeo Joon Yoon

Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set

Je Won Park; Jay Sung Joong Hong; Niranjan Parajuli; Won Seok Jung; Sung Ryeol Park; Si-Kyu Lim; Jae Kyung Sohng; Yeo Joon Yoon

Since the first use of streptomycin as an effective antibiotic drug in the treatment of tuberculosis, aminoglycoside antibiotics have been widely used against a variety of bacterial infections for over six decades. However, the pathways for aminoglycoside biosynthesis still remain unclear, mainly because of difficulty in genetic manipulation of actinomycetes producing this class of antibiotics. Gentamicin belongs to the group of 4,6-disubstituted aminoglycosides containing a characteristic core aminocyclitol moiety, 2-deoxystreptamine (2-DOS), and the recent discovery of its biosynthetic gene cluster in Micromonospora echinospora has enabled us to decipher its biosynthetic pathway. To determine the minimal set of genes and their functions for the generation of gentamicin A2, the first pseudotrisaccharide intermediate in the biosynthetic pathway for the gentamicin complex, various sets of candidate genes from M. echinospora and other related aminoglycoside-producing strains were introduced into a nonaminoglycoside producing strain of Streptomyces venezuelae. Heterologous expression of different combinations of putative 2-DOS biosynthetic genes revealed that a subset, gtmB-gtmA-gacH, is responsible for the biosynthesis of this core aminocyclitol moiety of gentamicin. Expression of gtmG together with gtmB-gtmA-gacH led to production of 2′-N-acetylparomamine, demonstrating that GtmG acts as a glycosyltransferase that adds N-acetyl-d-glucosamine (GLcNA) to 2-DOS. Expression of gtmM in a 2′-N-acetylparomamine-producing recombinant S. venezuelae strain generated paromamine. Expression of gtmE in an engineered paromamine-producing strain of S. venezuelae successfully generated gentamicin A2, indicating that GtmE is another glycosyltransferase that attaches d-xylose to paromamine. These results represent in vivo evidence elucidating the complete biosynthetic pathway of the pseudotrisaccharide aminoglycoside.


The Journal of Antibiotics | 2010

Biosynthesis of rapamycin and its regulation: past achievements and recent progress

Sung Ryeol Park; Young Ji Yoo; Yeon-Hee Ban; Yeo Joon Yoon

Rapamycin and its analogs are clinically important macrolide compounds produced by Streptomyces hygroscopicus. They exhibit antifungal, immunosuppressive, antitumor, neuroprotective and antiaging activities. The core macrolactone ring of rapamycin is biosynthesized by hybrid type I modular polyketide synthase (PKS)/nonribosomal peptide synthetase systems primed with 4,5-dihydrocyclohex-1-ene-carboxylic acid. The linear polyketide chain is condensed with pipecolate by peptide synthetase, followed by cyclization to form the macrolide ring and modified by a series of post-PKS tailoring steps. The aim of this review was to outline past and recent advances in the biosynthesis and regulation of rapamycin, with an emphasis on the distinguished contributions of Professor Demain to the study of rapamycin. In addition, this article describes the biological activities as well as mechanism of action of rapamycin and its derivatives. Recent attempts to improve the productivity of rapamycin and generate diverse rapamycin analogs through mutasynthesis and mutagenesis are also introduced, along with some future perspectives.


Journal of Biotechnology | 2009

Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae

Sung Ryeol Park; Jin A Yoon; Ji Hye Paik; Je Won Park; Yeon-Hee Ban; Eun Ji Kim; Young Ji Yoo; Ah Reum Han; Yeo Joon Yoon

Phenylpropanoids, including flavonoids and stilbenes, are plant secondary metabolites with potential pharmacological and nutraceutical properties. To expand the applicability of Streptomyces venezuelae as a heterologous host to plant polyketide production, flavonoid and stilbene biosynthetic genes were expressed in an engineered strain of S. venezuelae DHS2001 bearing a deletion of native pikromycin polyketide synthase gene. A plasmid expressing the 4-coumarate/cinnamate:coenzyme A ligase from Streptomyces coelicolor (ScCCL) and the chalcone synthase from Arabidopsis thaliana (atCHS) under the control of a single ermE* promoter was constructed and introduced into S. venezuelae DHS2001. The resulting strain produced racemic naringenin and pinocembrin from 4-coumaric acid and cinnamic acid, respectively. Placement of an additional ermE* promoter upstream of the codon-optimized atCHS (atCHS(op)) gene significantly increased the yield of both flavanones. Expression of codon-optimized chalcone isomerase gene from Medicago sativa, together with ScCCL and atCHS(op) genes led to production of (2S)-flavanones, but the yield was reduced. On the other hand, a recombinant strain harboring the ScCCL and codon-optimized stilbene synthase gene from Arachis hypogaea generated stilbenes such as resveratrol and pinosylvin. This is the first report on the heterologous expression of plant phenylpropanoid biosynthetic pathways in Streptomyces genus.


Applied Microbiology and Biotechnology | 2007

Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae

Won Seok Jung; Ah Reum Han; Jay Sung Joong Hong; Sung Ryeol Park; Cha Yong Choi; Je Won Park; Yeo Joon Yoon

To develop a system for combinatorial biosynthesis of glycosylated macrolides, Streptomyces venezuelae was genetically manipulated to be deficient in the production of its macrolide antibiotics by deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of thymidine diphosphate (TDP)-d-quinovose or TDP-d-olivose in conjunction with the glycosyltransferase–auxiliary protein pair DesVII/DesVIII derived from S. venezuelae were expressed in the mutant strain. Feeding the representative 12-, 14-, and 16-membered ring macrolactones including 10-deoxymethynolide, narbonolide, and tylactone, respectively, to each mutant strain capable of producing TDP-d-quinovose or TDP-d-olivose resulted in the successful production of the corresponding quinovose- and olivose-glycosylated macrolides. In mutant strains where the DesVII/DesVIII glycosyltransferase–auxiliary protein pair was replaced by TylMII/TylMIII derived from Streptomyces fradiae, quinovosyl and olivosyl tylactone were produced; however, neither glycosylated 10-deoxymethynolide nor narbonolide were generated, suggesting that the glycosyltransferase TylMII has more stringent substrate specificity toward its aglycones than DesVII. These results demonstrate successful generation of structurally diverse hybrid macrolides using a S. venezuelae in vivo system and provide further insight into the substrate flexibility of glycosyltransferases.


Applied Microbiology and Biotechnology | 2013

Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes.

Myoung Chong Song; Eunji Kim; Yeon Hee Ban; Young Ji Yoo; Eun Ji Kim; Sung Ryeol Park; Ramesh Prasad Pandey; Jae Kyung Sohng; Yeo Joon Yoon

Bioactive natural products, such as polyketides, flavonoids, glycopeptides, and aminoglycosides, have been used as therapeutic agents. Many of them contain structurally diverse sugar moieties attached to the aglycone core structures. Glycosyltransferases (GTs) catalyze the attachment of nucleotide-activated sugar substrates to acceptor aglycones. Because these sugar moieties are usually essential for biological activity, in vivo pathway engineering in prokaryotic hosts and in vitro enzymatic approaches coupled with GT engineering are currently being used to synthesize novel glycosylated derivatives, and some of them exhibited improved biological activities compared to the parent molecules. Therefore, harnessing the potential of diverse glycosylation reactions in prokaryotes will increase the structural diversity of natural products and the possibility to generate new bioactive products.


Applied and Environmental Microbiology | 2008

Enhanced Heterologous Production of Desosaminyl Macrolides and Their Hydroxylated Derivatives by Overexpression of the pikD Regulatory Gene in Streptomyces venezuelae

Won Seok Jung; Soon Jeong Jeong; Sung Ryeol Park; Cha Yong Choi; Byoung Chul Park; Je Won Park; Yeo Joon Yoon

ABSTRACT To elevate the production level of heterologous polyketide in Streptomyces venezuelae, an additional copy of the positive regulatory gene pikD was introduced into the pikromycin (Pik) polyketide synthase (PKS) deletion mutant of S. venezuelae ATCC 15439 expressing tylosin PKS genes. The resulting mutant strain showed enhanced production of both tylactone (TL) and desosaminyl tylactone (DesTL) of 2.7- and 17.1-fold, respectively. The notable increase in DesTL production strongly suggested that PikD upregulates the expression of the desosamine (des) biosynthetic gene cluster. In addition, two hydroxylated forms of DesTL were newly detected from the extract of this mutant. These hydroxylated forms presumably resulted from a PikD-dependent increase in expression of the pikC gene that encodes P450 hydroxylase. Gene expression analysis by reverse transcriptase PCR and bioconversion experiments of 10-deoxymethynolide, narbonolide, and TL into the corresponding desosaminyl macrolides indicated that PikD is a positive regulator of the des and pikC genes, as well as the Pik PKS genes. These results demonstrate the role of PikD as a pathway-specific positive regulator of the entire Pik biosynthetic pathway and its usefulness in the development of a host-vector system for efficient heterologous production of desosaminyl macrolides and novel hydroxylated compounds.


Nature Communications | 2016

Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway

Sung Ryeol Park; Ashootosh Tripathi; Jianfeng Wu; Pamela J. Schultz; Isaiah Yim; Thomas J. McQuade; Fengan Yu; Carl J. Arevang; Abraham Y. Mensah; Giselle Tamayo-Castillo; Chuanwu Xi; David H. Sherman

Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm. This cellular superstructure can display increased resistance to antibiotics and cause serious, persistent health problems in humans. Here we describe a high-throughput in vitro screen to identify inhibitors of Acinetobacter baumannii biofilms using a library of natural product extracts derived from marine microbes. Analysis of extracts derived from Streptomyces gandocaensis results in the discovery of three peptidic metabolites (cahuitamycins A–C), with cahuitamycin C being the most effective inhibitor (IC50=14.5 μM). Biosynthesis of cahuitamycin C proceeds via a convergent biosynthetic pathway, with one of the steps apparently being catalysed by an unlinked gene encoding a 6-methylsalicylate synthase. Efforts to assess starter unit diversification through selective mutasynthesis lead to production of unnatural analogues cahuitamycins D and E of increased potency (IC50=8.4 and 10.5 μM).

Collaboration


Dive into the Sung Ryeol Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ah Reum Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Ji Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge