Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeo Joon Yoon is active.

Publication


Featured researches published by Yeo Joon Yoon.


Journal of the American Chemical Society | 2011

Biosynthesis of the Allylmalonyl-CoA Extender Unit for the FK506 Polyketide Synthase Proceeds through a Dedicated Polyketide Synthase and Facilitates the Mutasynthesis of Analogues

SangJoon Mo; Donghwan Kim; Jong-Hyun Lee; Je Won Park; Devi B. Basnet; Yeon Hee Ban; Young Ji Yoo; Shu-Wei Chen; Sung Ryeol Park; Eun Ae Choi; Eunji Kim; Ying-Yu Jin; Sung-Kwon Lee; Ju Yeol Park; Yuan Liu; Mi Ok Lee; Keum Soon Lee; Sang Jun Kim; Dooil Kim; Byoung Chul Park; Sang-gi Lee; Ho Jeong Kwon; Joo-Won Suh; Bradley S. Moore; Si-Kyu Lim; Yeo Joon Yoon

The allyl moiety of the immunosuppressive agent FK506 is structurally unique among polyketides and critical for its potent biological activity. Here, we detail the biosynthetic pathway to allylmalonyl-coenzyme A (CoA), from which the FK506 allyl group is derived, based on a comprehensive chemical, biochemical, and genetic interrogation of three FK506 gene clusters. A discrete polyketide synthase (PKS) with noncanonical domain architecture presumably in coordination with the fatty acid synthase pathway of the host catalyzes a multistep enzymatic reaction to allylmalonyl-CoA via trans-2-pentenyl-acyl carrier protein. Characterization of this discrete pathway facilitated the engineered biosynthesis of novel allyl group-modified FK506 analogues, 36-fluoro-FK520 and 36-methyl-FK506, the latter of which exhibits improved neurite outgrowth activity. This unique feature of FK506 biosynthesis, in which a dedicated PKS provides an atypical extender unit for the main modular PKS, illuminates a new strategy for the combinatorial biosynthesis of designer macrolide scaffolds as well as FK506 analogues.


Nature Chemical Biology | 2015

Reinvigorating natural product combinatorial biosynthesis with synthetic biology

Eunji Kim; Bradley S. Moore; Yeo Joon Yoon

Natural products continue to play a pivotal role in drug-discovery efforts and in the understanding if human health. The ability to extend natures chemistry through combinatorial biosynthesis--altering functional groups, regiochemistry and scaffold backbones through the manipulation of biosynthetic enzymes--offers unique opportunities to create natural product analogs. Incorporating emerging synthetic biology techniques has the potential to further accelerate the refinement of combinatorial biosynthesis as a robust platform for the diversification of natural chemical drug leads. Two decades after the field originated, we discuss the current limitations, the realities and the state of the art of combinatorial biosynthesis, including the engineering of substrate specificity of biosynthetic enzymes and the development of heterologous expression systems for biosynthetic pathways. We also propose a new perspective for the combinatorial biosynthesis of natural products that could reinvigorate drug discovery by using synthetic biology in combination with synthetic chemistry.


Biotechnology and Bioengineering | 2009

Expanding substrate specificity of GT‐B fold glycosyltransferase via domain swapping and high‐throughput screening

Sung-Hee Park; Hyung-Yeon Park; Jae Kyung Sohng; Hee Chan Lee; Kwangkyoung Liou; Yeo Joon Yoon; Byung-Gee Kim

Glycosyltransferases (GTs) are crucial enzymes in the biosynthesis and diversification of therapeutically important natural products, and the majority of them belong to the GT‐B superfamily, which is composed of separate N‐ and C‐domains that are responsible for the recognition of the sugar acceptor and donor, respectively. In an effort to expand the substrate specificity of GT, a chimeric library with different crossover points was constructed between the N‐terminal fragments of kanamycin GT (kanF) and the C‐terminal fragments of vancomycin GT (gtfE) genes by incremental truncation method. A plate‐based pH color assay was newly developed for the selection of functional domain‐swapped GTs, and a mutant (HMT31) with a crossover point (N‐kanF‐669 bp and 753 bp‐gtfE‐C) for domain swapping was screened. The most active mutant HMT31 (50 kDa) efficiently catalyzed 2‐DOS (aglycone substrate for KanF) glucosylation using dTDP‐glucose (glycone substrate for GtfE) with kcat/Km of 162.8 ± 0.1 mM−1 min−1. Moreover, HMT31 showed improved substrate specificity toward seven more NDP‐sugars. This study presents a domain swapping method as a potential means to glycorandomization toward various syntheses of 2‐DOS‐based aminoglycoside derivatives. Biotechnol. Bioeng. 2009;102: 988–994.


Applied Microbiology and Biotechnology | 2010

Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects

Sung Ryeol Park; Ah Reum Han; Yeon-Hee Ban; Young Ji Yoo; Eun Ji Kim; Yeo Joon Yoon

Polyketides comprise one of the major families of natural products. They are found in a wide variety of bacteria, fungi, and plants and include a large number of medically important compounds. Polyketides are biosynthesized by polyketide synthases (PKSs). One of the major groups of polyketides are the macrolides, the activities of which are derived from the presence of a macrolactone ring to which one or more 6-deoxysugars are attached. The core macrocyclic ring is biosynthesized from acyl-CoA precursors by PKS. Genetic manipulation of PKS-encoding genes can result in predictable changes in the structure of the macrolactone component, many of which are not easily achieved through standard chemical derivatization or total synthesis. Furthermore, many of the changes, including post-PKS modifications such as glycosylation and oxidation, can be combined for further structural diversification. This review highlights the current state of novel macrolide production with a focus on the genetic engineering of PKS and post-PKS tailoring genes. Such engineering of the metabolic pathways for macrolide biosynthesis provides attractive alternatives for the production of diverse non-natural compounds. Other issues of importance, including the engineering of precursor pathways and heterologous expression of macrolide biosynthetic genes, are also considered.


Nature Chemical Biology | 2011

Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation

Je Won Park; Sung Ryeol Park; Keshav Kumar Nepal; Ah Reum Han; Yeon Hee Ban; Young Ji Yoo; Eun Ji Kim; Eui Min Kim; Dooil Kim; Jae Kyung Sohng; Yeo Joon Yoon

Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides.


Nature Communications | 2016

The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2)

Yujin Jeong; Ji-Nu Kim; Min Woo Kim; Giselda Bucca; Suhyung Cho; Yeo Joon Yoon; Byung-Gee Kim; Jung-Hye Roe; Sun Chang Kim; Colin P. Smith; Byung-Kwan Cho

Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor, the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set

Je Won Park; Jay Sung Joong Hong; Niranjan Parajuli; Won Seok Jung; Sung Ryeol Park; Si-Kyu Lim; Jae Kyung Sohng; Yeo Joon Yoon

Since the first use of streptomycin as an effective antibiotic drug in the treatment of tuberculosis, aminoglycoside antibiotics have been widely used against a variety of bacterial infections for over six decades. However, the pathways for aminoglycoside biosynthesis still remain unclear, mainly because of difficulty in genetic manipulation of actinomycetes producing this class of antibiotics. Gentamicin belongs to the group of 4,6-disubstituted aminoglycosides containing a characteristic core aminocyclitol moiety, 2-deoxystreptamine (2-DOS), and the recent discovery of its biosynthetic gene cluster in Micromonospora echinospora has enabled us to decipher its biosynthetic pathway. To determine the minimal set of genes and their functions for the generation of gentamicin A2, the first pseudotrisaccharide intermediate in the biosynthetic pathway for the gentamicin complex, various sets of candidate genes from M. echinospora and other related aminoglycoside-producing strains were introduced into a nonaminoglycoside producing strain of Streptomyces venezuelae. Heterologous expression of different combinations of putative 2-DOS biosynthetic genes revealed that a subset, gtmB-gtmA-gacH, is responsible for the biosynthesis of this core aminocyclitol moiety of gentamicin. Expression of gtmG together with gtmB-gtmA-gacH led to production of 2′-N-acetylparomamine, demonstrating that GtmG acts as a glycosyltransferase that adds N-acetyl-d-glucosamine (GLcNA) to 2-DOS. Expression of gtmM in a 2′-N-acetylparomamine-producing recombinant S. venezuelae strain generated paromamine. Expression of gtmE in an engineered paromamine-producing strain of S. venezuelae successfully generated gentamicin A2, indicating that GtmE is another glycosyltransferase that attaches d-xylose to paromamine. These results represent in vivo evidence elucidating the complete biosynthetic pathway of the pseudotrisaccharide aminoglycoside.


Organic Letters | 2012

Heterologous production of 4-O-demethylbarbamide, a marine cyanobacterial natural product.

Eun Ji Kim; Jong-Hyun Lee; Hyukjae Choi; Alban R. Pereira; Yeon Hee Ban; Young Ji Yoo; Eunji Kim; Je Won Park; David H. Sherman; William H. Gerwick; Yeo Joon Yoon

Heterologous expression of the barbamide biosynthetic gene cluster, obtained from the marine cyanobacterium Moorea producens, in the terrestrial actinobacterium Streptomyces venezuelae, resulted in the production of a new barbamide congener 4-O-demethylbarbamide, demonstrating the potential of this approach for investigating the assembly and tailoring of complex marine natural products.


Applied and Environmental Microbiology | 2011

Development of a Streptomyces venezuelae-Based Combinatorial Biosynthetic System for the Production of Glycosylated Derivatives of Doxorubicin and Its Biosynthetic Intermediates

Ah Reum Han; Je Won Park; Mi Kyeong Lee; Yeon Hee Ban; Young Ji Yoo; Eun Ji Kim; Eunji Kim; Byung-Gee Kim; Jae Kyung Sohng; Yeo Joon Yoon

ABSTRACT Doxorubicin, one of the most widely used anticancer drugs, is composed of a tetracyclic polyketide aglycone and l-daunosamine as a deoxysugar moiety, which acts as an important determinant of its biological activity. This is exemplified by the fewer side effects of semisynthetic epirubicin (4′-epi-doxorubicin). An efficient combinatorial biosynthetic system that can convert the exogenous aglycone ε-rhodomycinone into diverse glycosylated derivatives of doxorubicin or its biosynthetic intermediates, rhodomycin D and daunorubicin, was developed through the use of Streptomyces venezuelae mutants carrying plasmids that direct the biosynthesis of different nucleotide deoxysugars and their transfer onto aglycone, as well as the postglycosylation modifications. This system improved epirubicin production from ε-rhodomycinone by selecting a substrate flexible glycosyltransferase, AknS, which was able to transfer the unnatural sugar donors and a TDP-4-ketohexose reductase, AvrE, which efficiently supported the biosynthesis of TDP-4-epi-l-daunosamine. Furthermore, a range of doxorubicin analogs containing diverse deoxysugar moieties, seven of which are novel rhodomycin D derivatives, were generated. This provides new insights into the functions of deoxysugar biosynthetic enzymes and demonstrates the potential of the S. venezuelae-based combinatorial biosynthetic system as a simple biological tool for modifying structurally complex sugar moieties attached to anthracyclines as an alternative to chemical syntheses for improving anticancer agents.


The Journal of Antibiotics | 2010

Biosynthesis of rapamycin and its regulation: past achievements and recent progress

Sung Ryeol Park; Young Ji Yoo; Yeon-Hee Ban; Yeo Joon Yoon

Rapamycin and its analogs are clinically important macrolide compounds produced by Streptomyces hygroscopicus. They exhibit antifungal, immunosuppressive, antitumor, neuroprotective and antiaging activities. The core macrolactone ring of rapamycin is biosynthesized by hybrid type I modular polyketide synthase (PKS)/nonribosomal peptide synthetase systems primed with 4,5-dihydrocyclohex-1-ene-carboxylic acid. The linear polyketide chain is condensed with pipecolate by peptide synthetase, followed by cyclization to form the macrolide ring and modified by a series of post-PKS tailoring steps. The aim of this review was to outline past and recent advances in the biosynthesis and regulation of rapamycin, with an emphasis on the distinguished contributions of Professor Demain to the study of rapamycin. In addition, this article describes the biological activities as well as mechanism of action of rapamycin and its derivatives. Recent attempts to improve the productivity of rapamycin and generate diverse rapamycin analogs through mutasynthesis and mutagenesis are also introduced, along with some future perspectives.

Collaboration


Dive into the Yeo Joon Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Ji Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ah Reum Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Cha Yong Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge