Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean H. Brittain is active.

Publication


Featured researches published by Jean H. Brittain.


Magnetic Resonance in Medicine | 2005

Iterative Decomposition of Water and Fat With Echo Asymmetry and Least-Squares Estimation (IDEAL): Application With Fast Spin-Echo Imaging

Scott B. Reeder; Angel R. Pineda; Zhifei Wen; Ann Shimakawa; Huanzhou Yu; Jean H. Brittain; Garry E. Gold; Christopher H. Beaulieu; Norbert J. Pelc

Chemical shift based methods are often used to achieve uniform water–fat separation that is insensitive to Bo inhomogeneities. Many spin‐echo (SE) or fast SE (FSE) approaches acquire three echoes shifted symmetrically about the SE, creating time‐dependent phase shifts caused by water–fat chemical shift. This work demonstrates that symmetrically acquired echoes cause artifacts that degrade image quality. According to theory, the noise performance of any water–fat separation method is dependent on the proportion of water and fat within a voxel, and the position of echoes relative to the SE. To address this problem, we propose a method termed “iterative decomposition of water and fat with echo asymmetric and least‐squares estimation” (IDEAL). This technique combines asymmetrically acquired echoes with an iterative least‐squares decomposition algorithm to maximize noise performance. Theoretical calculations predict that the optimal echo combination occurs when the relative phase of the echoes is separated by 2π/3, with the middle echo centered at π/2+πk (k = any integer), i.e., (–π/6+πk, π/2+πk, 7π/6+πk). Only with these echo combinations can noise performance reach the maximum possible and be independent of the proportion of water and fat. Close agreement between theoretical and experimental results obtained from an oil–water phantom was observed, demonstrating that the iterative least‐squares decomposition method is an efficient estimator. Magn Reson Med, 2005.


Magnetic Resonance in Medicine | 2008

Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling.

Huanzhou Yu; Ann Shimakawa; Charles A. McKenzie; Ethan K. Brodsky; Jean H. Brittain; Scott B. Reeder

Multiecho chemical shift–based water‐fat separation methods are seeing increasing clinical use due to their ability to estimate and correct for field inhomogeneities. Previous chemical shift‐based water‐fat separation methods used a relatively simple signal model that assumes both water and fat have a single resonant frequency. However, it is well known that fat has several spectral peaks. This inaccuracy in the signal model results in two undesired effects. First, water and fat are incompletely separated. Second, methods designed to estimate T  2* in the presence of fat incorrectly estimate the T  2* decay in tissues containing fat. In this work, a more accurate multifrequency model of fat is included in the iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL) water‐fat separation and simultaneous T  2* estimation techniques. The fat spectrum can be assumed to be constant in all subjects and measured a priori using MR spectroscopy. Alternatively, the fat spectrum can be estimated directly from the data using novel spectrum self‐calibration algorithms. The improvement in water‐fat separation and T  2* estimation is demonstrated in a variety of in vivo applications, including knee, ankle, spine, breast, and abdominal scans. Magn Reson Med 60:1122–1134, 2008.


Magnetic Resonance in Medicine | 2007

Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise.

Chia-Ying Liu; Charles A. McKenzie; Huanzhou Yu; Jean H. Brittain; Scott B. Reeder

Quantification of hepatic steatosis is a significant unmet need for the diagnosis and treatment of patients with nonalcoholic fatty liver disease (NAFLD). MRI is capable of separating water and fat signals in order to quantify fatty infiltration of the liver (hepatic steatosis). Unfortunately, fat signal has confounding T1 effects and the nonzero mean noise in low signal‐to‐noise ratio (SNR) magnitude images can lead to incorrect estimation of the true lipid percentage. In this study, the effects of bias from T1 effects and image noise were investigated. An oil/water phantom with volume fat‐fractions ranging linearly from 0% to 100% was designed and validated using a spoiled gradient echo (SPGR) sequence in combination with a chemical‐shift based fat‐water separation method known as iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL). We demonstrated two approaches to reduce the effects of T1: small flip angle (flip angle) and dual flip angle methods. Both methods were shown to effectively minimize deviation of the measured fat‐fraction from its true value. We also demonstrated two methods to reduce noise bias: magnitude discrimination and phase‐constrained reconstruction. Both methods were shown to reduce this noise bias effectively from 15% to less than 1%. Magn Reson Med 58:354–364, 2007.


Journal of Magnetic Resonance Imaging | 2007

Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation

Huanzhou Yu; Charles A. McKenzie; Ann Shimakawa; Anthony Vu; Anja C. S. Brau; Philip J. Beatty; Angel R. Pineda; Jean H. Brittain; Scott B. Reeder

To describe and demonstrate the feasibility of a novel multiecho reconstruction technique that achieves simultaneous water‐fat decomposition and T2* estimation. The method removes interference of water‐fat separation with iron‐induced T2* effects and therefore has potential for the simultaneous characterization of hepatic steatosis (fatty infiltration) and iron overload.


Journal of Magnetic Resonance Imaging | 2007

Water–fat separation with IDEAL gradient‐echo imaging

Scott B. Reeder; Charles A. McKenzie; Angel R. Pineda; Huanzhou Yu; Ann Shimakawa; Anja C. S. Brau; Brian A. Hargreaves; Garry E. Gold; Jean H. Brittain

To combine gradient‐echo (GRE) imaging with a multipoint water–fat separation method known as “iterative decomposition of water and fat with echo asymmetry and least squares estimation” (IDEAL) for uniform water–fat separation. Robust fat suppression is necessary for many GRE imaging applications; unfortunately, uniform fat suppression is challenging in the presence of B0 inhomogeneities. These challenges are addressed with the IDEAL technique.


Radiology | 2011

Quantification of Hepatic Steatosis with T1-independent, T2*-corrected MR Imaging with Spectral Modeling of Fat: Blinded Comparison with MR Spectroscopy

Sina Meisamy; Catherine D. G. Hines; Gavin Hamilton; Claude B. Sirlin; Charles A. McKenzie; Huanzhou Yu; Jean H. Brittain; Scott B. Reeder

PURPOSE To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. MATERIALS AND METHODS This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. RESULTS Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2) = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). CONCLUSION T1-independent chemical shift-based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2 correction, spectral modeling of fat, and eddy current correction methods are used.


Magnetic Resonance in Medicine | 2006

Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast.

Reed F. Busse; Hari Hariharan; Anthony Vu; Jean H. Brittain

Reducing and continuously varying the flip angle of the refocusing RF pulses in a rapid acquisition with relaxation enhancement (RARE; fast/turbo spin echo) sequence is a useful means of addressing high RF power deposition and modulation transfer function (MTF) distortion due to relaxation. This work presents a streamlined technique to generate a sequence of refocusing flip angles on a per‐prescription basis that produces relatively high SNR and limits blurring in a wide range of materials encountered in vivo. Since the “effective TE” (traditionally defined as the time at which the center of k‐space is sampled) no longer corresponds to the expected amount of spin‐echo T2 contrast due to the mixing of stimulated and spin echoes, a “contrast‐equivalent” TE is defined and experimentally demonstrated that allows annotation of a more accurate effective TE that matches the contrast produced by 180° refocusing. Furthermore, contrast is shown to be manipulable by the addition of magnetization preparation pulse sequence segments, such as T2‐prep, to produce clinically desirable contrast for routine head and body imaging. Magn Reson Med, 2006.


Journal of Magnetic Resonance Imaging | 2010

Fat and water magnetic resonance imaging

Thorsten A. Bley; Oliver Wieben; Christopher J. François; Jean H. Brittain; Scott B. Reeder

A wide variety of fat suppression and water–fat separation methods are used to suppress fat signal and improve visualization of abnormalities. This article reviews the most commonly used techniques for fat suppression and fat–water imaging including 1) chemically selective fat suppression pulses “FAT‐SAT”; 2) spatial‐spectral pulses (water excitation); 3) short inversion time (TI) inversion recovery (STIR) imaging; 4) chemical shift based water–fat separation methods; and finally 5) fat suppression and balanced steady‐state free precession (SSFP) sequences. The basic physical background of these techniques including their specific advantages and disadvantages is given and related to clinical applications. This enables the reader to understand the reasons why some fat suppression methods work better than others in specific clinical settings. J. Magn. Reson. Imaging 2010;31:4–18.


Magnetic Resonance in Medicine | 2005

Field map estimation with a region growing scheme for iterative 3-point water-fat decomposition

Huanzhou Yu; Scott B. Reeder; Ann Shimakawa; Jean H. Brittain; Norbert J. Pelc

Robust fat suppression techniques are required for many clinical applications. Multi‐echo water‐fat separation methods are relatively insensitive to B0 field inhomogeneity compared to the fat saturation method. Estimation of this field inhomogeneity, or field map, is an essential and important step, which is well known to have ambiguity. For an iterative water‐fat decomposition method recently proposed, ambiguities still exist, but are more complex in nature. They were studied by analytical expressions and simulations. To avoid convergence to incorrect field map solutions, an initial guess closer to the true field map is necessary. This can be achieved using a region growing process, which correlates the estimation among neighboring pixels. Further improvement in stability is achieved using a low‐resolution reconstruction to guide the selection of the starting pixels for the region growing. The proposed method was implemented and shown to significantly improve the algorithms immunity to field inhomogeneity. Magn Reson Med, 2005.


Journal of Magnetic Resonance Imaging | 2009

Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling.

Scott B. Reeder; Philip M. Robson; Huanzhou Yu; Ann Shimakawa; Catherine D. G. Hines; Charles A. McKenzie; Jean H. Brittain

To develop a chemical‐shift–based imaging method for fat quantification that accounts for the complex spectrum of fat, and to compare this method with MR spectroscopy (MRS). Quantitative noninvasive biomarkers of hepatic steatosis are urgently needed for the diagnosis and management of nonalcoholic fatty liver disease (NAFLD).

Collaboration


Dive into the Jean H. Brittain's collaboration.

Top Co-Authors

Avatar

Scott B. Reeder

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles A. McKenzie

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine D. G. Hines

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge