Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where JeanMarie Lisnock is active.

Publication


Featured researches published by JeanMarie Lisnock.


Journal of Immunology | 2000

Deficiency in Inducible Nitric Oxide Synthase Results in Reduced Atherosclerosis in Apolipoprotein E-Deficient Mice

Patricia A. Detmers; Melba Hernandez; John S. Mudgett; Heide Hassing; Charlotte Burton; Steven S. Mundt; Sam Chun; Dan Fletcher; Deborah Card; JeanMarie Lisnock; Reneé Weikel; James D. Bergstrom; Diane Shevell; Anne Hermanowski-Vosatka; Carl P. Sparrow; Yu-Sheng Chao; Daniel J. Rader; Samuel D. Wright; Ellen Puré

Inducible NO synthase (iNOS) present in human atherosclerotic plaques could contribute to the inflammatory process of plaque development. The role of iNOS in atherosclerosis was tested directly by evaluating the development of lesions in atherosclerosis-susceptible apolipoprotein E (apoE)−/− mice that were also deficient in iNOS. ApoE−/− and iNOS−/− mice were cross-bred to produce apoE−/−/iNOS−/− mice and apoE−/−/iNOS+/+ controls. Males and females were placed on a high fat diet at the time of weaning, and atherosclerosis was evaluated at two time points by different methods. The deficiency in iNOS had no effect on plasma cholesterol, triglyceride, or nitrate levels. Morphometric measurement of lesion area in the aortic root at 16 wk showed a 30–50% reduction in apoE−/−/iNOS−/− mice compared with apoE−/−/iNOS+/+ mice. Although the size of the lesions in apoE−/−/iNOS−/− mice was reduced, the lesions maintained a ratio of fibrotic:foam cell-rich:necrotic areas that was similar to controls. Biochemical measurements of aortic cholesterol in additional groups of mice at 22 wk revealed significant 45–70% reductions in both male and female apoE−/−/iNOS−/− mice compared with control mice. The results indicate that iNOS contributes to the size of atherosclerotic lesions in apoE-deficient mice, perhaps through a direct effect at the site of the lesion.


Chemistry & Biology | 2003

The structure of JNK3 in complex with small molecule inhibitors: structural basis for potency and selectivity

Giovanna Scapin; Sangita B. Patel; JeanMarie Lisnock; Joseph W. Becker; Philip V. LoGrasso

The c-Jun terminal kinases (JNKs) are members of the mitogen-activated protein (MAP) kinase family and regulate signal transduction in response to environmental stress. Activation of JNK3, a neuronal-specific isoform, has been associated with neurological damage, and as such, JNK3 may represent an attractive target for the treatment of neurological disorders. The MAP kinases share between 50% and 80% sequence identity. In order to obtain efficacious and safe compounds, it is necessary to address the issues of potency and selectivity. We report here four crystal structures of JNK3 in complex with three different classes of inhibitors. These structures provide a clear picture of the interactions that each class of compound made with the kinase. Knowledge of the atomic interactions involved in these diverse binding modes provides a platform for structure-guided modification of these compounds, or the de novo design of novel inhibitors that could satisfy the need for potency and selectivity.


Biochimica et Biophysica Acta | 2000

A target for cholesterol absorption inhibitors in the enterocyte brush border membrane.

Patricia A. Detmers; Sushma Patel; Melba Hernandez; Judy Montenegro; JeanMarie Lisnock; Bill Pikounis; Mark G. Steiner; Dooseop Kim; Carl P. Sparrow; Yu-Sheng Chao; Samuel D. Wright

Uptake of cholesterol by the intestinal absorptive epithelium can be selectively blocked by specific small molecules, like the sterol glycoside, L-166,143. Furthermore, (3)H-labeled L-166,143 administered orally to hamsters binds specifically to the intestinal mucosa, suggesting the existence of a cholesterol transporter. Using autoradiography, the binding site of (3)H-L-166,143 in the hamster small intestine was localized to the very apical aspect of the absorptive epithelial cells. Label was competed by non-radioactive L-166,143 and two structurally distinct cholesterol absorption inhibitors, suggesting a common site of action for these compounds. L-166,143 blocked uptake of (3)H-cholesterol into enterocytes in vivo, as demonstrated by autoradiography, suggesting that it inhibits a very early step of cholesterol absorption, incorporation into the brush border membrane. This conclusion was confirmed by studies in which intestinal brush borders were isolated from hamsters dosed with (3)H-cholesterol in the presence or absence of L-166,143. Uptake of (3)H-cholesterol into the membranes was substantially inhibited by the compound. In contrast, an inhibitor of acyl CoA:cholesterol acyltransferase, did not affect uptake of (3)H-cholesterol into the brush border membranes. These results strongly support the existence of a specific transporter that facilitates the movement of cholesterol from bile acid micelles into the brush border membranes of enterocytes.


Bioorganic & Medicinal Chemistry Letters | 2014

Mineralocorticoid receptor antagonists: Identification of heterocyclic amide replacements in the oxazolidinedione series

Jason M. Cox; Hong D. Chu; Christine Yang; Hong C. Shen; Zhicai Wu; Jaume Balsells; Alejandro Crespo; Patricia Brown; Beata Zamlynny; Judyann Wiltsie; Joseph Clemas; Jack Gibson; Lisa Contino; JeanMarie Lisnock; Gaochao Zhou; Margarita Garcia-Calvo; Thomas J. Bateman; Ling Xu; Xinchun Tong; Martin Crook; Peter J. Sinclair

Novel potent and selective mineralocorticoid receptor antagonists were identified, utilizing heterocyclic amide replacements in the oxazolidinedione series. Structure-activity relationship (SAR) efforts focused on improving lipophilic ligand efficiency (LLE) while maintaining nuclear hormone receptor selectivity and reasonable pharmacokinetic profiles.


Bioorganic & Medicinal Chemistry Letters | 2010

Spiroimidazolidinone NPC1L1 inhibitors. Part 2: structure-activity studies and in vivo efficacy.

Kobporn L. Howell; Robert J. DeVita; Margarita Garcia-Calvo; Roger Meurer; JeanMarie Lisnock; Herbert G. Bull; Daniel R. McMasters; Margaret E. McCann; Sander G. Mills

Ezetimibe (Zetia®), a cholesterol-absorption inhibitor (CAI) approved by the FDA for the treatment of hypercholesterolemia, is believed to target the intestine protein Niemann-Pick C1-Like 1 (NPC1L1) or its pathway. A spiroimidazolidinone NPC1L1 inhibitor identified by virtual screening showed moderate binding activity but was not efficacious in an in vivo rodent model of cholesterol absorption. Synthesis of analogs established the structure-activity relationships for binding activity, and resulted in compounds with in vivo efficacy, including 24, which inhibited plasma cholesterol absorption by 67% in the mouse, thereby providing proof-of-concept that non-β-lactams can be effective CAIs.


Bioorganic & Medicinal Chemistry Letters | 2009

Spiroimidazolidinone NPC1L1 inhibitors. 1: Discovery by 3D-similarity-based virtual screening

Daniel R. McMasters; Margarita Garcia-Calvo; Vladimir N. Maiorov; Margaret E. McCann; Roger Meurer; Herbert G. Bull; JeanMarie Lisnock; Kobporn L. Howell; Robert J. DeVita

A series of spiroimidazolidinone NPC1L1 inhibitors was discovered by virtual screening of the Merck corporate sample repository using 3D-similarity-based screening. Selection of 330 compounds for testing in an in vitro NPC1L1 binding assay yielded six hits in six distinct chemical series. Follow-up 2D similarity searching yielded several sub- to low-micromolar leads; among these was spiroimidazolidinone 10, with an IC(50) of 2.5 microM. Compound 10 provided a useful scaffold to initiate a medicinal chemistry campaign.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of novel oxazolidinedione derivatives as potent and selective mineralocorticoid receptor antagonists.

Christine Yang; Hong C. Shen; Zhicai Wu; Hong D. Chu; Jason M. Cox; Jaume Balsells; Alejandro Crespo; Patricia Brown; Beata Zamlynny; Judyann Wiltsie; Joseph Clemas; Jack Gibson; Lisa Contino; JeanMarie Lisnock; Gaochao Zhou; Margarita Garcia-Calvo; Thomas J. Bateman; Ling Xu; Xinchun Tong; Martin Crook; Peter J. Sinclair

Novel oxazolidinedione analogs were discovered as potent and selective mineralocorticoid receptor (MR) antagonists. Structure-activity relationship (SAR) studies were focused on improving the potency and microsomal stability. Selected compounds demonstrated excellent MR activity, reasonable nuclear hormone receptor selectivity, and acceptable rat pharmacokinetics.


ACS Medicinal Chemistry Letters | 2014

Discovery of a Potent and Selective DGAT1 Inhibitor with a Piperidinyl-oxy-cyclohexanecarboxylic Acid Moiety.

Shuwen He; Qingmei Hong; Zhong Lai; David X. Yang; Pauline C. Ting; Jeffrey T. Kuethe; Timothy A. Cernak; Kevin D. Dykstra; Donald M. Sperbeck; Zhicai Wu; Yang Yu; Ginger X. Yang; Tianying Jian; Jian Liu; Deodial Guiadeen; Arto D. Krikorian; Lisa M. Sonatore; Judyann Wiltsie; Jinqi Liu; Judith N. Gorski; Christine C. Chung; Jack Gibson; JeanMarie Lisnock; Jianying Xiao; Michael Wolff; Sharon Tong; Maria Madeira; Bindhu V. Karanam; Dong-Ming Shen; James M. Balkovec

We report the discovery of a novel series of DGAT1 inhibitors in the benzimidazole class with a piperdinyl-oxy-cyclohexanecarboxylic acid moiety. This novel series possesses significantly improved selectivity against the A2A receptor, no ACAT1 off-target activity at 10 μM, and higher aqueous solubility and free fraction in plasma as compared to the previously reported pyridyl-oxy-cyclohexanecarboxylic acid series. In particular, 5B was shown to possess an excellent selectivity profile by screening it against a panel of more than 100 biological targets. Compound 5B significantly reduces lipid excursion in LTT in mouse and rat, demonstrates DGAT1 mediated reduction of food intake and body weight in mice, is negative in a 3-strain Ames test, and appears to distribute preferentially in the liver and the intestine in mice. We believe this lead series possesses significant potential to identify optimized compounds for clinical development.


Bioorganic & Medicinal Chemistry Letters | 2014

Pyrazoles as non-classical bioisosteres in prolylcarboxypeptidase (PrCP) inhibitors

Thomas H. Graham; Min Shu; Andreas Verras; Qing Chen; Margarita Garcia-Calvo; Xiaohua Li; JeanMarie Lisnock; Xinchun Tong; Elaine C. Tung; Judyann Wiltsie; Jeffrey J. Hale; Shirly Pinto; Dong-Ming Shen

Bioisosteres are integral components of modern pharmaceutical research that allow structural optimization to maximize in vivo efficacy and minimize adverse effects by selectively modifying pharmacodynamic, pharmacokinetic and physicochemical properties. A recent medicinal chemistry campaign focused on identifying small molecule inhibitors of prolylcarboxypeptidase (PrCP) initiated an investigation into the use of pyrazoles as bioisosteres for amides. The results indicate that pyrazoles are suitable bioisosteric replacements of amide functional groups. The study is an example of managing bioisosteric replacement by incorporating subsequent structural modifications to maintain potency against the selected target. A heuristic model for an embedded pharmacophore is also described.


ACS Medicinal Chemistry Letters | 2013

Potent DGAT1 Inhibitors in the Benzimidazole Class with a Pyridyl-oxy-cyclohexanecarboxylic Acid Moiety

Shuwen He; Qingmei Hong; Zhong Lai; Zhicai Wu; Yang Yu; David W. Kim; Pauline C. Ting; Jeffrey T. Kuethe; Ginger X. Yang; Tianying Jian; Jian Liu; Deodial Guiadeen; Arto D. Krikorian; Donald M. Sperbeck; Lisa M. Sonatore; Judyann Wiltsie; Christine C. Chung; Jack Gibson; JeanMarie Lisnock; Beth Ann Murphy; Judith N. Gorski; Jinqi Liu; Dunlu Chen; Xiaoli Chen; Michael Wolff; Sharon Tong; Maria Madeira; Bindhu V. Karanam; Dong-Ming Shen; James M. Balkovec

We report the design and synthesis of a series of novel DGAT1 inhibitors in the benzimidazole class with a pyridyl-oxy-cyclohexanecarboxylic acid moiety. In particular, compound 11A is a potent DGAT1 inhibitor with excellent selectivity against ACAT1. Compound 11A significantly reduces triglyceride excursion in lipid tolerance tests (LTT) in both mice and dogs at low plasma exposure. An in vivo study in mice with des-fluoro analogue 10A indicates that this series of compounds appears to distribute in intestine preferentially over plasma. The propensity to target intestine over plasma could be advantageous in reducing potential side effects since lower circulating levels of drug are required for efficacy. However, in the preclinical species, compound 11A undergoes cis/trans epimerization in vivo, which could complicate further development due to the presence of an active metabolite.

Collaboration


Dive into the JeanMarie Lisnock's collaboration.

Researchain Logo
Decentralizing Knowledge